Explaining Race Gaps in Policing: Normative and Empirical Challenges

Sonja B. Starr*
May 5, 2015

This piece explores the many kinds of quantitative claims that researchers and commentators regularly make about race and policing. Everyone agrees that there are enormous racial gaps in U.S. rates of stops, arrests, searches, and use of force. But there are dramatically conflicting claims as to why. The problem isn’t just the data shortcomings with which the literature has long struggled. It’s confusion about what questions we should be asking. Different kinds of numerical comparisons and research designs often imply sharply differing conceptions of what racial equality in policing means. These normative premises often go unstated, such that readers may easily miss these differences. The overarching objective of this Article is to highlight the connection between the normative and the empirical. I identify plausible conceptions of racial equality in policing and assess which empirical methods can best test those conceptions.

The Article gives particular attention to how researchers should address two important research questions. The first is whether criminal conduct differences explain policing disparities. Empirical researchers as well as casual commentators typically purport to address this question either by comparing racial groups’ shares of police interactions to their shares of crime, or by comparing two groups’ ratio of police interactions to their ratio of crimes. Using examples and mathematical proofs, I show that neither of these comparison types answers the key question whether people with like criminal conduct are being treated the same way. These comparisons generally overcorrect for racial differences in criminal conduct, misleadingly masking the size (or even reversing the apparent direction) of disparities in policing of people with the same conduct. Second, I examine how researchers should investigate the effects of racial discrimination. I review several methods in the current literature, which offer useful insights but have substantial limitations, and critique the recently dominant “hit-rate” approach, which relies on faulty normative and empirical premises. Instead, I propose supplementing existing tools with a new approach: the use of “testers.”

* Professor of Law, University of Michigan Law School; Touroff-Glueck Visiting Professor of Law and Psychiatry, Harvard Law School. Thanks to Alicia Davis, Avlana Eisenberg, Mark Fancher, Jim Greiner, Sam Gross, Louis Kaplow, Randy Kennedy, David Moran, J.J. Prescott, Eve Brensike Primus, Jon Sacks, Margo Schlanger, Michael Steinberg, Matthew Stephenson, Kim Thomas, and participants in the Harvard Law School Faculty Workshop and the Michigan Law Faculty Brownbag for helpful comments and conversations. Brian Apel, Grady Bridges, Alex Harris, Avi Kupfer, Linfeng Liu, and Andrew Sand provided excellent research assistance.
EXPLAINING RACE GAPS IN POLICING

As recent events have painfully illustrated, public debates over race and policing are typically catalyzed by flashpoints—individual, terrible cases, often involving police killings of unarmed civilians. But these debates are shaped by competing underlying understandings of the everyday realities of law enforcement. On average, people of color in the United States, especially black men, interact with police far more often than white Americans do. Black men are 2.5 times as likely to be arrested as white men, and local studies show even larger gaps in stops, searches, and use of force, though there are no national numbers. ¹ The existence of these gaps is not contested; the reasons are. Do these patterns reflect race-based targeting, or differences in criminal conduct? Or are there other contributing factors—for example, are citizens more likely to report crimes with minority suspects?

Such questions sharply divide public opinion—largely along racial lines²—and among public commentators, polar opposite answers are each often presented as essentially indisputable.³ This dissensus does not merely result from one side or another ignoring or twisting facts. Rather, these questions also have no clear answer in the large empirical literature. The problem goes beyond heterogeneity across locations and police forces, and beyond well-recognized data limitations. It stems in part from normative and conceptual confusions that suffuse the field. Researchers often do not articulate exactly what question they seek to answer and why policymakers should care about it. Sometimes, they pose one question but use an empirical model that effectively answers another.

This Article is an effort at clarity. It is written from an empiricist’s perspective, but isn’t an empirical paper and doesn’t answer the questions posed above. Instead, it addresses threshold questions about research objectives and design: First, what should policing-disparity studies seek to estimate, and why? Second, what empirical strategies can best identify those quantities of interest? I hope this discussion will be useful not just for researchers, but also for policymakers, judges, and citizens who wish to make sense of the bewildering array of statistics on race and policing and to recognize when those statistics are misleading.

There is no single answer to the question of what researchers should estimate; the answer depends on the purpose of the research. But policing-disparity researchers typically seek to inform policy or legal debates in some way, so they

¹ See infra notes 7-13 and accompanying text (discussing raw disparity statistics).
² E.g., Ronald Weitzer & Steven A. Tuch, Racially Biased Policing: Determinants of Citizen Perceptions, 83 SOCIAL FORCES 1009, 1017 (2005) (finding blacks are six times likelier than whites to believe racial profiling is a problem).
³ For example, a recent letter from dozens of civil rights and community leaders called the pattern of young black men subjected to “aggressive police tactics…too obvious to be a coincidence and too frequent to be a mistake…[I]t is time for our country to counter the effects of systemic racial bias.” Letter from Maya Rockeymoore et al., to President Obama (Aug. 25, 2014), available at http://www.washingtonpost.com/wp-srv/ad/public/static/letter/. By contrast, prominent commentator Heather Mac Donald stated: “It is black crime rates that predict the presence of blacks in the criminal justice system. Not some miscarriage of justice.” Meet the Press, Aug. 17, 2014.
should focus on some objective that matters (or should matter) to policymakers or lawyers. When such researchers specify their empirical models, they are not just making technical decisions. Rather, their choices imply normative judgments about what racial equality in policing means and what inequalities are worth studying. When researchers do not explicitly explain those judgments, it’s easy for legal and policy commentators to misunderstand the studies’ implications. Sometimes, researchers themselves seem to share those misunderstandings.

To illustrate these problems in more depth, much of this Article focuses on two types of inequality that hold particular policy or legal interest: (1) disparity in police interactions conditional on criminal conduct (that is, holding criminal conduct constant); and (2) the causal effects of police racial discrimination. These are not the only worthwhile targets of empirical research, but they are important ones.

Extensive research and commentary focuses solely on whether race gaps in policing are explained by crime, ignoring other potential explanatory variables. This literature contains a rich and important debate about how to measure crime, and I offer thoughts on the competing methods. But I focus chiefly on unexamined problems concerning what researchers should do with whatever crime measure they settle on—that is, what does it mean to “account for crime”?

To explore this question, one first must ask why so many scholars and commentators focus exclusively on crime’s explanatory role. The answer isn’t just its descriptive importance. Rather, the shared assumption seems to be that crime differences could potentially justify policing differences in a way that other explanations cannot. The most plausible reasons for this assumption imply a particular equality objective: people with the same criminal conduct should face the same probability of police interactions, regardless of race. This principle is an instantiation of the moral intuition that like cases should be treated alike.

But the specific types of policing-to-crime comparisons that pervade the literature fail to test whether equality in this sense exists. The two common approaches compare a group’s share of police interactions to its share of crimes, or compare the ratio of two groups’ police interaction rates to the ratio of their crime rates. The assumption is that racially equitable policing would produce a racial distribution of police interactions that mirrors the distribution of crime. The basic problem is that this would only be so if everyone the police interact with is guilty of the crime(s) in question. In reality, though, few police interventions are confined to the guilty. Even if the police are quite good (but not perfect) at targeting the guilty, Share/Share and Ratio/Ratio comparisons can be surprisingly misleading.

As I show with examples and mathematical proofs, when there is racial equality in policing of those with like conduct, Share/Share or Ratio/Ratio comparisons always misleadingly suggest disproportionality—specifically, that the higher-crime group is being “underpoliced” after accounting for crime. And when the higher-crime group is in fact “overpoliced” on average conditional on criminal conduct, the common comparisons mask those disparities’ size, or even reverse their apparent direction. The literature is thus rife with comparisons that overstate the extent to which race gaps in police interactions can be explained by criminal conduct. (Even those arguing
that crime does not fully explain policing gaps draw such comparisons, with the effect of understating their arguments.) These comparisons seem intuitively sensible, but our intuitions are wrong. While “accounting for crime” is a valid objective, the specific ways crime is routinely “accounted for” exaggerate its explanatory value. I offer thoughts on how we can get the right numbers instead.

The second estimand on which I focus, the effect of police racial discrimination, is central to equal protection doctrine, and is also important for policy purposes; the experience of being targeted because of race is a key reason why communities often see heightened police presence as a burden. But empirically identifying racial discrimination is difficult. It requires disentangling other potential causes of disparity—not just criminal conduct, but other potential confounding variables, some of which may be unobservable to researchers.

The literature has taken a variety of approaches to this problem. Economic literature has recently been dominated by the “hit-rate” approach, which posits that irrational police discrimination can be measured by comparing the rates at which police actions produce evidence of crime. Unfortunately, although this approach is mathematically elegant, it does not tell us anything we should care about. It is unrelated to any defensible conception of either equality or efficiency, relies on implausible empirical assumptions, and makes demonstrably false predictions.

More insight can be gained from various more traditional observational methods, although significant omitted-variables and sample-selection concerns mean that cautious interpretation is required. Some clever studies exploit variation in decision-makers’ access to race information, potentially providing stronger causal identification, but these too have substantial limitations. Finally, lab experiments demonstrating prevalent implicit racial bias support stronger causal inferences, but do not tell us how these biases translate into real-world outcomes.

To supplement these tools, I propose a new approach: using paired “testers” of different races to elicit and compare potential police responses. This approach, often also called “auditing,” is a staple of research on (and enforcement of laws against) employment, housing, and lending discrimination. In the policing context, the approach has not been tried, likely due to safety, ethical, and legal concerns. I discuss ways to mitigate these concerns through careful research design and cooperation with police departments or other government agencies. Despite its challenges, this approach offers something that other methods generally do not: the promise of strong causal identification in a real-world setting.

Part I describes raw racial gaps in U.S. police interactions, discusses their social impacts, and introduces normative questions surrounding their empirical assessment. Part II examines how and why the relationship between policing gaps and criminal conduct should be estimated. Part III examines the estimation of police racial discrimination, and proposes the auditing method.
I. Stakes and Objectives

In this Part, I discuss what’s at stake in efforts to quantify racial disparities in policing. Section A describes the problems these efforts seek to explain: large race gaps in criminal justice involvement. Section B outlines possible empirical objectives.

A. Race and Criminal Justice: Raw Disparities and Their Consequences

Let’s begin with what we know: people of color, especially black men, are involved in the U.S. criminal justice system at highly disproportionate rates. These “raw” disparities have been the focus of some empirical work, some scholars’ policy arguments, and much media coverage. Herein, I use the term “disparity” to refer to raw outcome gaps, not to any particular reason for those gaps, unless specified. Note that because black-white disparities are particularly large, I use them as the paradigmatic research target in this Article. However, estimating other demographic disparities poses the same basic challenges.

In 2011, the arrest rate for all black adults was approximately 10%; the rate for all white adults was approximately 4%. Rates are especially high for black men, and black-white arrest disparities are larger for more serious crimes. We lack national data on policing decisions other than arrest, although a new, federally funded initiative is attempting to fill that gap. Meanwhile, local studies have reported large disparities. For example, “Blacks were subjected to 63% of [police-pedestrian] encounters, even though they made up just 24% of Boston’s population.”

7 These rates come from the online arrest rate calculation tool from the Bureau of Justice Statistics, available at http://www.bjs.gov/index.cfm?ty=datool&ssurl=/arrests/index.cfm#.

8 Id. The BJS data are not broken down by race and sex combined, but in general, men are more than three times as likely to be arrested as women are.

9 Id. Note that available national arrest statistics do not distinguish by Hispanic ethnicity.

1976 to 1998, African-Americans were four times as likely as whites to be killed by police, but data on non-deadly uses of force are more limited.13

Disparities in U.S. incarceration rates are even larger: black Americans are about six times as likely to be incarcerated as whites, with Hispanic rates midway between. One in fifteen adult black men is behind bars, including one in nine under age 35.14 Researchers have attributed the majority of incarceration disparity to arrest differences,15 so understanding why these arrest differences exist is a key step in understanding our demographically concentrated system of mass incarceration.16

As these figures make clear, people of color disproportionately bear the burdens of our expansive criminal justice system. These burdens include the social consequences of mass incarceration17 and the potentially lifelong legal and socioeconomic consequences of having a criminal record.18 The harms of police interactions are not confined to the guilty—most stops and searches produce no evidence of wrongdoing.19 Interacting with police is often stressful and scary,20 and even if no charges are brought, arrest records can produce stigma, job-market consequences, and increased sentences in future cases.21

When police use force, the individual and social impacts can be especially acute, as recent events in Ferguson and beyond have demonstrated. This Article does not focus primarily on use of force, instead focusing (like the existing policing-disparity literature) mainly on investigative interactions, including stops, searches, and arrests. These issues are entangled, however. One key reason those killed by the police are predominantly black men is that black men are vastly more likely to be stopped in

14 *Pew Ctr. on the States, One in 100: Behind Bars in America 2008* (Feb. 2008).
16 Many studies investigate disparities in charging, plea-bargaining, and especially sentencing, which could also contribute to the incarceration gap. But this points to another reason it is important to understand policing disparities: otherwise, it is difficult to interpret findings concerning disparities later in the justice process. Studies of later process stages use samples consisting only of cases that made it into the criminal justice system and use control variables (such as arrest offense or conviction offense) that are shaped by police officers’ earlier decisions. Police discrimination could introduce sample selection bias and could distort the control variables as well. Most studies compound the problem by using samples of *sentenced* cases and controlling for sentencing-stage severity measures, failing to account for disparities in charging, plea-bargaining, and sentencing fact-finding. See Sonja B. Starr & M. Marit Rehavi, *Mandatory Sentencing and Racial Disparity: Assessing the Role of Prosecutors and the Effects of Booker*, 123 YALE L.J. 2, 39-77 (reviewing literature and explaining this problem).
17 See, e.g. Garland et al., supra note 15, at 9-14 (reviewing literature).
the first place, creating far more interactions that can go terribly wrong. And fear of excessive force can make a “routine” police interaction traumatic.

Of course, policing seeks to prevent crime, and crime damages communities too. And some crimes (for example, homicide) are more commonly committed both by and against people of color— which is unsurprising in light of socioeconomic stratification by race. If the police were to fail to arrest more members of groups that commit more crimes, they might be fairly criticized for underserving communities of color, especially because most crimes with victims are intraracial. Such a failure could send an expressive message devaluing victims of color. Analogously, critics have condemned victim-race disparities in capital sentencing for implying that “a black life simply is worth less than a white life.”

One might ask: on balance, do policing disparities harm or benefit the “over-policed” group? In some contexts, the answer is clearly “harm,” because the harms are concentrated on the group while the benefits are shared by everyone, or because it is the innocent within the group, not the guilty, who face excessive policing. But in other contexts, the question resists generalizable answers. Other bodies of empirical scholarship have struggled with estimating the costs of crime and incarceration and the effects of incarceration and policing on crime. The cost of stops, searches, and arrests remain unquantified, as do the effects of community resentment of police. These factors surely vary across groups and localities, and communities’ perceptions of what balance of benefits and burdens is appropriate may also vary. Disparity researchers typically do not seek to answer the “net benefits” question (nor do I); they provide a different piece of the puzzle for policymakers.

C. Conceptions and Causes of Disparity: Possible Research Objectives

Imagine that policing-disparity researchers could gather whatever data they wanted. What would we prioritize doing with it? This kind of thought experiment is often a valuable guide to empirical research. Here, the answer turns on questions about what kinds of inequality matter.

Consider the following claims about what would constitute racial equality in a city’s law enforcement. For the purpose of this exercise and the rest of the Article’s

27 Within many black communities that once pushed for aggressive law enforcement, public opinion has also shifted over time. WILLIAM J. STUNTZ, THE COLLAPSE OF AMERICAN CRIMINAL JUSTICE 285-87 (2011); Forman, supra note 31, at 34-39.
hypothesicals, I assume that we are assessing stops, but one could substitute other outcomes, such as searches or arrests or downstream outcomes like incarceration.

1. The racial distribution of stops should track the racial distribution of the population.
2. The racial distribution of stops should track the racial distribution of crime commission.
3. A racial disparity in stop rates is only justified if it is proportional to a disparity in crime rates.
4. Holding criminal conduct constant, the probability that someone will be stopped should not differ by race.
5. The police should not consider race when deciding whom to stop.
6. The police should consider race only when doing so improves their odds of catching criminals.

While some of these formulations sound fairly similar, they express different ideas. Formulation (1) treats raw disparities as troubling inequalities, regardless of the reason. Formulations (2) through (4) focus solely on disentangling the explanatory role of crime (implicitly treating other explanations as unwarranted sources of disparity). Of these, versions (2) and (3) are the most common conceptions of equality tested by the empirical literature; such studies compare stop data to some measure of crime across groups. In Part II, I argue that version (4) is a better way to think about “accounting for crime,” and show that it’s quite different from versions (2) and (3). Version (4) can be teased out into separate sub-principles requiring racial equality in policing of the innocent and in policing of the guilty.\(^{28}\)

Formulations (5) and (6) are different in kind. They focus on decision-making inputs (and specifically the role played by race), not on outcome gaps and their crime justifications. Formulation (5) treats all police uses of race as suspect, while Formulation (6) reflects a recently prominent approach distinguishing between “irrational” prejudice and “rational” use of empirical information.

Many other nuances are possible. When disparity researchers specify an empirical model, they make many decisions about what sources of disparity “count.” For example, should researchers control for the neighborhood? Some say no: excessive targeting of minority neighborhoods is a potentially important source of unjustified disparity, not something to be filtered out.\(^{29}\) The counterargument is that intra-neighborhood disparities—albeit not the whole story—are also important, and filtering out all the potentially confounding ways neighborhoods differ allows those disparities to be studied in a causally rigorous way.\(^{30}\)

A reader might reasonably object that most empirical papers frame their objectives as descriptive. To describe racial disparities as being explained in part by some variable does not necessarily imply that the part mediated by that variable is

\(^{29}\) See Fagan et al., *infra* note 103, at 316.

\(^{30}\) Indeed, unwarranted intra-neighborhood disparities may raise especially acute fairness concerns: they burden one racial group while neighbors of all races enjoy the crime-prevention benefits.
normatively justified. For example, I may want to disentangle the effects of racial discrimination from those of socioeconomic discrimination even if I believe both are troubling. Empiricists need not specify which explanations are “bad” and which are “good”—they need merely decide which ones are worth disentangling.

This is a fair objection, but it only goes so far. First, many studies do explicitly offer estimates of “unwarranted” disparities. Second, those studying race and policing cannot be blind to the context in which their work will be received. The subject matter is high-profile and charged. Statistics are cited by virtually everyone in the relevant policy and legal discussions. When a study reports a bottom-line number characterized as the “racial disparity holding other factors constant,” for example, most readers will read that as “the unjustified racial disparity.” So researchers should think carefully about what other factors they hold constant.

Just as importantly, authors in that situation should clearly explain their choices and why they made them, what their estimates represent, and what they don’t represent. They should not bury these issues deep in the methods section—they should be front and center. Choices like what control variables are included are not technicalities; they define what the study is measuring. Moreover, if researchers aim to tease out the roles of several different factors in producing disparities, they should present results in a way that highlights those roles, rather than just highlighting the disparity that is left over once identified factors are filtered out.31

Instead, the empirical literature is largely either quiet or confusing on questions like these. Some studies use methods that do not mask the task they purport to address—for example, stating a concern with “racial profiling,” but employing analyses that focus only on ruling out crime differences.32 Scholars also sometimes mischaracterize one another’s arguments because of confusion about these framing issues—for instance, mistaking the choice to estimate a particular type of disparity for an empirical claim that only that type of disparity exists.33

In Parts II and III, I seek to clarify the relationships among different objectives, to discuss what the “right” questions are, and to examine ways of answering them. Part II focuses on the relationship between policing disparities and crime, and Part

31 Various decomposition methods from labor economics are designed for this purpose, but are rarely used in the criminal justice literature. See, e.g., Sonja B. Starr, Estimating Gender Disparities in Federal Criminal Cases, AM. L. & ECON. REV. __, tbl.4 (forthcoming).

33 For example, Pickerill et al. claim that legal scholars who focus on racially disparate treatment assume “race is the sole factor that causes police to search motorists. J. Mitchell Pickerill et al., Search and Seizure, Racial Profiling, and Traffic Stops: A Disparate Impact Framework, 31 LAW & POL’Y 1, 2 (2009) Engel likewise claims that “the legalistic perspective” assumes away racial differences in crime rates and assumes racial profiling is always ineffective. Robin S. Engel, A Critique of the ‘Outcome Test’ in Racial Profiling Research, 25 JUSTICE Q. 1, 5-9 (2012). Both claim that such legal scholars believe raw disparities are never normatively justified. Id. at 9; Pickerill et al. supra, at 5. But such claims are not common in legal literature, and none are “legalistic”; the law makes it hard to infer discrimination from disparity. It is perfectly consistent to critique disparate treatment while recognizing that other factors also contribute to disparities. See, e.g., KENNEDY, supra note 24, at 150-51.
III focuses on analysis of police decision-making, especially the role of racial discrimination. In highlighting these questions, I do not mean to devalue the importance of measuring raw disparities (version 1). But the raw disparity picture is already relatively clear, so I do not focus on it, instead focusing on why the gaps exist.

II. Policing Disparities and Crime

In analyses of the “why” question, the usual starting point is crime. Indeed, it’s also often the ending point: many analyses assess only whether crime differences can explain policing gaps. This Part examines how crime’s explanatory role should be analyzed. I begin with the question of how to measure crime, and then ask whether crime “benchmarks” are being deployed in normatively meaningful ways, even assuming their accuracy. I show that comparisons between the distribution of crime and that of police interactions, which pervade empirical scholarship and policy debates, don’t mean what people imply when they use them. They don’t tell us whether people with like conduct are being treated alike. Rather, they systematically overstate the extent to which criminal conduct explains policing disparities.

A. Crime Benchmarks and the “Denominator Problem”

The search for crime “benchmarks” has long been seen as the key empirical challenge of policing-disparity research. Indeed, the problem of unmeasured crime bedevils essentially all empirical research related to crime. Many police forces have started collecting better data on whom the police are stopping, searching, and arresting. But without data on criminal conduct, we have nothing to compare this to. We have what many call a “denominator problem.”

The problem is really twofold. First, criminal justice datasets include no information about cases that never enter the justice system—that is, the vast majority of crimes. For example, surveys suggest there are at least hundreds of millions of drug crimes per year, but only about 1.5 million drug arrests. Even most reported violent and property crimes go unsolved. Second, even for those who do interact with police, we lack objective conduct measures. Rather, we have what officers write down, and in a study of policing disparity, one shouldn’t assume this is accurate.

34 E.g., Robin Shepard Engel & Jennifer M. Calnon, Comparing Benchmark Methodologies for Police-Citizen Contacts, 7 POLICE QUARTERLY 97, 98, 100 (2004); Ridgeway, supra, at 19.
35 See, e.g., Albert D. Biderman & Albert J. Reiss, Jr., On Exploring the 'Dark Figure' of Crime, 374 ANNALS OF THE AM. ACADEMY OF POLITICAL & SOCIAL SCIENCE 1, 1 (1976).
36 E.g., Meaghan Paulhaumas et al., State of the Science in Racial Profiling Research, in RACE, ETHNICITY, AND POLICING, supra note 6, at 239.
This situation is not really a data collection failure, however: nobody thinks the data in question ought to be collected comprehensively. The value that society places on freedom from constant surveillance requires that the vast majority of crimes go uncounted (not to mention unpunished). So researchers must rely on imperfect, incomplete proxies. But what makes a good proxy?

Some scholars use arrest rates, often from a prior time period, to stand in for crime rates. But this introduces a troubling circularity: arrests are discretionary decisions by the very actors whose stops are being studied. What really being asked is thus not “Does crime explain stop disparities?” but “Are stop disparities bigger than arrest disparities?” Arguably, arrest benchmarks might sometimes be defensible as deliberately conservative, but they should generally be avoided.

Reported crime is a better alternative, but is still imperfect. Crime reports are collected by local agencies and compiled by the FBI. The principal problem is that most crime goes unreported—about half of violent crimes and 60% of property crimes, according to victim surveys. Moreover, minor and victimless crimes are almost never reported, so reported-crime benchmarks are usually based on “index crimes,” violent crimes, or even just homicide. But if stop or arrest rates are driven heavily by drugs or minor crimes, comparing them to such benchmarks may introduce bias. Racial differences in crime rates are believed to be far greater for

39 For instance, Fagan et al., supra note 103, at 318-19, and Andrew Gelman et al., An Analysis of the NYPD’s Stop-and-Frisk Policy in the Context of Claims of Racial Bias, 102 J. AM. STAT. ASSOC. 813, 818-20 (2012), find disparities in stop-and-frisk rates after controlling for prior-year arrests. Their estimates are likely conservative, assuming arrest and stop disparities cut in the same direction.

41 Jennifer L. Truman, Criminal Victimization, 2010, Bureau of Justice Statistics, Bulletin, September 2011, 1, http://www.bjs.gov/content/pub/pdf/cv10.pdf. Garland et al., supra, at 19-20, respond that reported crime is the right comparison point because “the criminal justice process does not begin until the police become aware of a crime,” so police are not responsible for reporting disparities. But much policing is proactive, not report-driven. See Ridgeway, supra, at 18 (finding 30% of NYPD stops responded to citizen calls). Regardless, here, we are assessing whether policing burdens are fairly distributed conditional on criminal conduct, not whether to blame police for any maldistribution.

43 The eight crimes used in the Uniform Crime Reports “index”: murder, forcible rape, arson, larceny, robbery, burglary, car theft, and aggravated assault.

44 E.g., Fagan et al., supra note 103, at 318-19 (using homicide); Greg Ridgeway, Analysis of Racial Disparities in the New York Police Department’s Stop, Question, and Frisk Practices, RAND Corp. Rep’t TR-534 xii, 19, http://www.rand.org/pubs/technical_reports/TR534.html (using violent crime). Again, this choice might be defensible as conservative: Fagan et al. find disparities despite using the homicide benchmark, which is striking given the likely downward-biasing effect. But it is clearly inappropriate to use violent-crime benchmarks to show lack of disparity, as Ridgeway does.
violent crime, especially homicide. So using violent-crime benchmarks to proxy for all crime risks substantially overstating the extent to which disparities in stops or arrests are explained by differences in criminal conduct.

Another alternative is survey data. Some surveys, such as the Census Bureau’s National Crime Victimization Survey (NCVS), gather data about crimes with victims. Other surveys ask individuals to self-report drug use. These generally show only minor racial differences in drug use, findings that scholars often contrast with large race gaps in drug arrest rates. Survey benchmarks avoid some of the concerns raised above: they cover crimes not reported to police, are not themselves shaped by police, and encompass a wider variety of crimes. But there remain concerns about accuracy. Also, national surveys’ samples are not designed to produce valid local estimates. And most drug surveys cover only use, not supply.

Given existing datasets’ limits, some researchers have gathered new data by physically observing public behavior—usually traffic violations. The seminal example was John Lamberth’s 1994 study of the New Jersey Turnpike, in which researchers drove just over the speed limit and observed the drivers who passed them; the racial composition of speeders was compared to Turnpike stop data. Subsequent highway speeding studies have used radar. Alpert et al. similarly physically observed traffic violations on city streets. Outside the traffic context, Dabney et al. used video cameras in a store to observe shoplifting—an innovative method, though the study’s

46 For the questionnaire, see http://www.bjs.gov/content/pub/pdf/ncvs2_2012.pdf. See Shima Baradaran, Race, Prediction, and Discretion, 81 GEO. WASH. L. REV. 157, 201 (2013) (citing the NCVS).
48 E.g., MICHELLE ALEXANDER, THE NEW JIM CROW 6-7; Yonette F. Thomas, The Social Epidemiology of Drug Abuse, 32 AM. J. PREVENTATIVE MED. S141 (2007); see also Gross & Barnes, supra note 10, at 681 (comparing survey data to traffic stop rates); Christopher L. Griffin, Jr. et. al., Corrections for Racial Disparities in Law Enforcement, 55 WM. & MARY L. REV. 1365, 1381-82 (2014) (using surveys on DWIs).
51 One survey that did ask questions about drug sales found somewhat higher rates among blacks, albeit not high enough to explain the arrest gap. See Frase, supra note 45, at 239.
52 John Lamberth, Revised Statistical Analysis of the Incidence of Police Stops and Arrests of Black Drivers/Travelers on the New Jersey Turnpike Between Exits or Interchanges 1 and 3 from the Years 1998 through 1991, Nov. 11, 1994. Fifteen percent of speeders and 35% of those stopped were black.
53 See Lage et al., supra note 32, at 211-12; Robin S. Engel et al., Pennsylvania State Police Project on Police-Citizen Contacts, Year 2 Report 64-65, 110 (2002).
54 Geoffrey P. Alpert et al., Investigating Racial Profiling by the Miami-Dade Police Department, 6 CRIMINOLOGY & PUB. POLY 25, 36, 41-44 (2007) (finding no unjustified racial disparity in stops).
EXPLAINING RACE GAPS IN POLICING

analysis is unfortunately hard to interpret. The study also illustrates a key concern with benchmarking generally: the appropriateness of comparing behavioral and policing-outcome data from different sources. The authors compare shoplifting apprehension figures from a national study to shoplifting rates at a single store, which could be atypical. The highway-speeding studies do better on this score, comparing observed behavior with stop data from the same highways.

The direct-observation method has promise for behaviors (like traffic offenses) occurring in predictable, public locations where researchers or recording devices can be stationed. It could usefully be applied to law enforcement checkpoints, which could record agents’ behavior and that of individuals passing through, plus any computer-database information that agents observe. This approach could go beyond traditional benchmarking, measuring individuals’ behavior and agents’ treatment for the same sample, instead of comparing across different datasets. But most policing contexts are not a good fit for direct observation—most crime occurs in private or unpredictable places. For such conduct, the best available benchmark probably remains victim reports or survey data, despite these sources’ limitations.

B. Criminal Conduct as a Possible Justification for Policing Disparities

Once one has settled on a crime benchmark, what should one do with it? To answer this question, we need to ask why so much research focuses on whether crime explains policing disparities to the exclusion of other possible explanations.

One possibility is crime’s descriptive importance. Many scholars have argued that crime differences are the single most important explanation for race gaps in U.S. arrest and incarceration rates. But this alone does not justify focusing on crime exclusively. Some policing-to-crime comparisons (such as the common comparison of drug arrest rates to use rates) do not actually find that crime substantially explains policing disparities. And even when it does, other factors may also be important. Indeed, when other contributors to disparity are layered on top of substantial crime differences, it amplifies their consequences. In any event, crime-disproportionality

55 The authors find no racial disparities in shoplifting after controlling for shopper behaviors such as product-tampering, but these controls seem to filter out part of the shoplifting conduct itself. Dean A. Dabney et al., Who Actually Steals? A Study of Covertly Observed Shoplifters, 21 JUST. Q. 693, 711 (2004).
56 Federal agencies have already conducted self-studies designed to produce racial benchmarks for comparisons to checkpoint stops. Bureau of Justice Statistics, Assessing Measurement Techniques for Identifying Race, Ethnicity, and Gender N.C.J. Report 196855, http://www.bjs.gov/content/pub/ascii/amtimeg.txt (2003). However, these studies merely recorded the race of those passing through, plus (in one study) some additional information such as gender, age, and number of carry-ons. This could easily be extended to record agent responses, individual behavior, and computer-system information.
57 E.g., KENNEDY, supra note 24, at 23, TONRY, supra note 65, at 79; Forman, supra note 31, at 31-32.
58 For example, suppose crime could explain the vast majority of the 6-to-1 black-white incarceration gap, i.e., whites were only 10% less likely to be incarcerated than blacks with the same criminal conduct. Even then, that gap would be consequential: reducing black incarceration by 10% would mean restoring the liberty of more than 1% of all black men under 35 in the United States (1 in 9 of whom are now in prison). See M. Marit Rehavi & Sonja B. Starr, Racial Disparity in Federal Criminal Sentences, 122 J. POLIT. ECON. 1320, 1349-50 (2014) (making a similar calculation).
analyses are not designed to support strong causal inferences, limiting their descriptive value. They tell us whether policing rates are in line with what we would expect based on crime patterns, not why they are or are not. For instance, policing patterns that are unexplained by crime might result from racial discrimination, or from applying race-neutral criteria that are differentially accurate across races.

But there is another reason for the focus on crime. Many researchers and commentators appear to treat crime differences as potential justifications for disparities in police interactions, not just explanations. Meanwhile, policing disparities that are disproportionate to crime differences are presented, explicitly or implicitly, as unjustified. The crime-disproportionality question seems to get at many people’s core intuitions about what makes racial disparities in the justice system not just unfortunate, but unfair. So what underlies these intuitions?

Start with an oft-repeated principle: like cases should be treated alike. The limits of this principle have been much debated, but it is clearly a widely shared intuition, at least as a default rule. A sensible way of understanding the literature’s emphasis on crime benchmarks is that criminality is what determines which cases are meaningfully “like.” If so, when we say policing should be “proportionate” to crime, we imply a specific objective: equal policing of people of different racial groups conditional on their criminal conduct. Assuming a simplified binary guilty/innocent division, this objective requires that (1) the probability that an innocent person will be stopped does not vary by race, and (2) the probability that a guilty person will be stopped does not vary by race. We can express these objectives as follows:

\[
(1) \quad D_I = \frac{S_{I1}/P_{I1}}{S_{I2}/P_{I2}} = 1, \quad \text{and} \quad (2) \quad D_G = \frac{S_{G1}/P_{G1}}{S_{G2}/P_{G2}} = 1
\]

Here, S stands for “stops” and P for “population,” subscripts I and G stand for “innocent” and “guilty,” and subscripts 1 and 2 identify the two racial groups being compared. \(D_I\) and \(D_G\) are two key measures of racial disproportionality in stops. Let’s call \(D_I\) the Stop Rate Ratio among the Innocent; it compares the rate at which innocents of racial group 1 are stopped to the rate at which innocents of racial group 2 are stopped. Meanwhile, \(D_G\) is the Stop Rate Ratio among the Guilty. When each ratio is 1, it reflects equal treatment across races within these criminal-conduct-defined groups. One can easily complicate proposition (2) to accommodate many varieties of criminality, rather than just “guilt”; the objective remains that those with the same culpability should face the same probability of apprehension.

But why does criminal behavior determine “likeness”? One strong argument is based on moral desert. Policing is not punishment, but it facilitates it, so if we think criminals deserve punishment, we should want them to face police stops, searches, and arrests; we should also want the innocent to avoid such interactions. The police

60 See Strauss, supra, at 3 (arguing, however, that there are often good reasons to depart from it).
lack perfect information, so they cannot stop every criminal and will stop some innocents. But if the probability of these errors varies by race, there is racial inequality unjustified by criminal conduct.61

Two clarifications are important here. First, I am not suggesting that the higher-crime group as a whole deserves heavier policing. The concept of “group desert” finds no support in retributive precepts,62 and affixing blame to an entire race would be particularly repugnant. Nonetheless, targeting of guilty individuals can in the aggregate produce group outcome differences. Second, I exclude use of force from this discussion. I do not think that criminal culpability means that one deserves to be subjected to physical violence by police. Use of force may occasionally be justified based on different kinds of moral considerations, focused on imminent risk. But such situations cannot be identified using crime benchmark data.

An alternative to the retributive rationale for treating crime as a special justification is to focus on the rule of law. The “like cases” principle is often described as a rule-of-law value: it “entails and is entailed by conformity to law.”63 If so, then law determines what cases are “like”—in the policing context, criminal law specifically. This argument focuses more on preventing arbitrary decision-making than on outcome fairness, but still implies that policing rates should be equal across racial groups conditional on criminal conduct.64

Note that one can embrace this objective without thinking that we shouldn’t worry about disparities that are explained by criminal conduct. But in that case, the worry wouldn’t principally be about policing inequities. Instead, we might focus on root causes of crime differences (for example, educational inequities and poverty), or else on the overall severity of our criminal law and its enforcement, given its disparate impact.65 Those who present policing-to-crime comparisons do not necessarily imply that these other types of inequality don’t matter, but they do imply that inequality in police interactions among people with like conduct is a distinct fairness problem that merits empirical measurement.

Richard Banks, Jennifer Eberhardt, and Lee Ross have called for separate attention to disparities in policing of the guilty and of the innocent, respectively. This call is persuasive: stops, searches, and arrests of the innocent are different kinds of events from the same treatment of the guilty, and affect communities differently.

61 See Thacher, supra note 28, at 2 (endorsing “racial equality within morally homogeneous groups”).
63 Winston, supra, at 5.
64 A counterargument is that perhaps what should determine “likeness” is behavior outwardly signaling likely criminality. This would be inconsistent with the moral desert objective, but one could defend it from the rule-of-law perspective. We lack data on underlying suspiciousness, however, and it is a readily manipulable characterization. The problems I identify below with policing-to-crime comparisons assume that actual criminality is the intended measure of “likeness.” If suspiciousness were the right measure and if crime is a poor proxy for it, that would raise additional problems for policing-to-crime comparisons, since they have the wrong comparison point entirely.
The authors go farther, however, asserting that when offending rates differ, “one cannot attain equality across groups with respect to both the investigation of the innocent and the apprehension of the guilty.” They claim:

If the crime rate is higher among Blacks than Whites, but the rates of investigation are the same, then an African American criminal will be less likely to be apprehended than a white criminal. To equalize across groups the likelihood that a criminal will be apprehended would require increasing stop-search rates among Blacks, which would have the unfortunate consequence of also increasing the likelihood that innocent Blacks are investigated…. Either innocent members of the higher crime rate group will be subject to a greater likelihood of investigation, or a greater percentage of criminals from the higher crime rate group will be permitted to stay at large.

This dilemma sounds daunting, and indeed, tradeoffs like this can sometimes emerge in practice. But the authors’ claim is much too strong. It is certainly possible to simultaneously equalize across races stop probabilities for both the innocent and the guilty, even with very different crime rates. For instance, randomized enforcement, such as at some DUI checkpoints, would always satisfy both requirements. Or suppose police stop suspected drunk drivers if and only if those drivers swerve. Suppose that regardless of race, 60% of drunk drivers and 10% of sober drivers swerve. The swerving criterion means that 60% of drunk drivers get stopped and 10% of sober drivers get stopped, regardless of race, whatever each racial group’s drunk-driving rate is. Stop productivity (the percentage of stops that catch drunks, as opposed to the percentage of drunks who get stopped) will be higher for whichever group has a higher drunk-driving rate. But this is troubling only if equal productivity is an important metric of equality. As I argue below, it isn’t.

Many other examples are given in the next Section and the appendix.

So there is nothing necessarily incompatible about racial equality in policing of both the guilty and the innocent—and if we want to assess whether criminal conduct “justifies” policing differences, we should ask whether those objectives are being achieved. Unfortunately, as I show below, the literature comparing policing rates to crime rates has overwhelmingly failed to ask that question.

C. Disproportionality Ratios: Are We Asking the Right Questions?

When researchers and commentators ask whether policing is “proportional” to crime, what proportion are they referring to? Two comparison types are widespread.

66 Banks et al., supra note 28, at 1178-79.
67 Id. at 1179.
68 Banks et al. also seem to conflate the question whether black and white criminals face the same rate of apprehension with the question whether the police leave “more Black criminals than White criminals at large as a proportion of the group’s population.” Id. at 1179. Equalizing the prevalence of criminals-at-large is not the same as equalizing apprehension rates conditional on criminality. The former is an appealing aspiration, but may be unachievable via policing alone if underlying crime rates are quite different, unless crime rates are highly elastic. Even if it could be done, it might require a police presence that communities would find intolerable—and would likely require one group to have a much higher apprehension rate for both the innocent and the guilty than the other group has. Realistically, policing can’t cancel out the many social and historical causes of crime-rate differences.
I show here that neither is consistent with the “treat like cases alike” objective. Again, my hypotheticals use “stops” as the policing outcome of interest, but others could substitute; many examples that I cite from the literature focus on arrests.

First, many analyses ask: Is the ratio of police interactions for two groups different from the ratio of crimes? For example, Prof. Michael Tonry writes that for adult men, the ratio of black to white self-reported violent crimes is “4:1, which is ‘very similar to differences observed in the Uniform Crime Reports of arrests for violent offenses at this age,’ unlike the adolescent years when the self-report ratio is 1.5:1 and the arrest ratio is 4:1.”69 His implication is that among adults, the arrest gap is explained by offending differences, but among adolescents, it’s not.

The implied conception of inequality is sometimes formally expressed by dividing the ratio of stop rates by the ratio of crime rates.70 I label this “Stop Ratio/Crime Ratio” or “Ratio/Ratio” disproportionality:

\[
\text{Stop Ratio/Crime Ratio} = \frac{\frac{\text{Stop Rate}_1}{\text{Stop Rate}_2}}{\frac{\text{Crime Rate}_1}{\text{Crime Rate}_2}} = \frac{S_1}{S_2} \overline{P}_C \frac{1}{1}
\]

For racial groups 1 and 2, \(S \) is the number of stops and \(P_C \) is the number of criminals (or crimes).71 These comparisons are sometimes framed in terms of rates of stops and crimes, but it is equivalent to use total numbers; the “per capita” parts of each rate term cancel.72 The implication is that when crime explains policing disparities, the stop ratio equals the crime ratio (so the Ratio/Ratio measure is 1). “Guilt” and “innocence” are generally presented as binary, but one could extend the concept to more complex scenarios. Note that this measure almost looks like \(D \) (the “Stop Rate Ratio” among the Guilty” defined in Section B above), but not quite: the stop terms here are not limited to the guilty. As we’ll see, that difference is important.

The second very common framing compares a group’s share of total stops to its share of total crime. I refer to this as “Stop Share/Crime Share” or “Share/Share”

69 Tonry, supra note 65, at 78-79. For similar examples, see Leadership Conference on Civil Rights & Leadership Conference Education Fund, Justice On Trial: Racial Disparities in the American Criminal Justice System (2000), http://www.civilrights.org/publications/justice-on-trial/ juvenile.html (citing the same ratios as Tonry’s concerning adolescents); Baradaran, supra note 46, at 201-02 (pointing to relatively similar ratios as evidence of lack of substantial unjustified disparity); American Civil Liberties Union, Blacks Found to Be 3.3 Times More Likely to Be Arrested for Marijuana Possession Than Whites in Michigan, Despite Equal Usage Rates (Jun. 4, 2013), https://www.aclu.org/criminal-law-reform/blacks-found-be-33-times-more-likely-be-arrested-marijuana-possession-whites (pointing to different arrest and crime ratios as evidence of unjustified disparity); Maia Szalavitz, Study: Whites More Likely to Abuse Drugs Than Blacks, TIME, Nov. 7, 2011 (same); Halliburton, supra, at 55 (same); Griffin, supra, at 1381-82 (comparing arrest and self-report rates for DWI).

71 The denominator here refers to guilty people, which tracks some prominent studies—for example, those that count speeding drivers. Alternatively, one could use number of crimes in a given period. For this purpose, these approaches are conceptually equivalent: the ratio of total crimes in a period should equal the average ratio of people committing a crime at all moments during that period.

72 See, e.g., Baradaran, supra note 46, at 201-02 (using raw numbers). If the stop and crime data come from different samples, however, the rates on the left must first be calculated within each sample.
disproportionality. For example, the debate over stops on the New Jersey Turnpike has revolved around these comparisons, beginning with Lamberth’s finding that the black stop share was 35% while the black share of speeders was 15%. On the other side, prominent commentator Heather MacDonald cites a finding that 25% of the drivers going 80mph in a 65mph zone were black; she then states: “Blacks are actually stopped less than their speeding behavior would predict—they are 23 percent of those stopped.” Similarly, a RAND Corporation study of NYPD’s stop-and-frisk policy (cited heavily by the NYPD) concludes that “blacks are substantially understopped” because they constitute 53% of all stops but 69% of violent-crime suspect descriptions. Other examples abound.

These comparisons imply that racially equitable policing should result in a racial distribution of stops that parallels the racial distribution of crime. So if a group’s stop share is bigger than its crime share, it is overpoliced relative to other groups, after accounting for crime; if the stop share is smaller, it is underpoliced; if they are about equal, there is no unjustified racial disparity. In the empirical literature, such comparisons are often formalized as another kind of disproportionality ratio:

\[
\frac{S_1}{S} = \frac{P_{G1}}{P_G}
\]

\(S_1\) and \(P_{G1}\) represent stops and criminals (or crimes) in Group 1 and \(S\) and \(P_G\) represent stops and criminals (or crimes) in the whole population.

These two disproportionality measures are related, but are not the same. The Ratio/Ratio measure compares two groups; the Share/Share measure compares one group to everybody. One obvious distinction is that “everybody” may include more than two groups. But even assuming a two-group world, the comparisons differ: the Share/Share approach compares Group 1 to the whole population including itself, while the Ratio/Ratio approach compares it to Group 2 only. The measures always

74 Ridgeway, supra, at 19.

75 E.g., Floyd v. City of New York, 959 F. Supp. 2d 540, 584 (S.D.N.Y. 2013) (citing another NYPD share/share comparison); Rebecca M. Blank et al., Measuring Discrimination 193 (2004) (comparing 18% black speeding share to 73% search share); Kathryn K. Russell, The Color of Crime 35 (1998) (comparing 38% black crack-user share to 85% conviction share); Robert J. Sampson & Janet L. Lauritsen, Racial and Ethnic Disparities in Crime and Criminal Justice in the United States, 21 CRIME & JUSTICE 311, 328 (1997) (comparing 56% black robbery suspect share to 61% arrest share); Joan Zorza, Mandatory Arrest for Domestic Violence Why It May Prove the Best First Step in Curbing Repeat Abuse, 10 CRIM. JUST. 2, 52 (1995) (comparing shares of domestic violence reports and arrests); Tracey Maclin, Race and the Fourth Amendment, 51 VAND. L. REV. 333 (1998) (comparing speeding and stop shares); Lange et al, supra note 32, at 211; Stacey Patton, If You’re White, That Joint Probably Won’t Lead to Jail Time, WASH. POST, Jan. 12, 2014 (comparing 14% black drug-user share to 34% drug-arrest and 53% drug-incarceration shares); Heather MacDonald, How to Increase the Crime Rate Nationwide, WALL STREET J., June 12, 2013, A17 (“Blacks, at 55% of all police-stop subjects in 2012, are actually understopped compared with their 66% representation among violent criminals.”).

76 E.g., Engel et al., supra note 53, at 104-09 (calculating traffic stop share/speeding share ratios for each of 27 Pennsylvania counties); see Engel, supra note 33, at 9 (describing wide use of this method).
cut in the same direction, but the Share/Share measure is always closer to 1; it is “diluted” because it is partially a self-comparison. Another difference (illustrated in the Appendix) is that the Share/Share measure depends on the groups’ sizes.

More importantly, neither the Ratio/Ratio comparison nor the Share/Share comparison tests whether there are racial disparities in policing of people with the same criminal conduct. These comparisons can easily be misinterpreted as answers to that question (indeed, they certainly seem intended to answer it), but this interpretation is misleading. Ratio/Ratio and Share/Share comparisons do not measure racial disparities among the guilty \((D_c \text{ above}) \) or among the innocent \((D_i) \). Nor do they meaningfully aggregate the two—they do not measure average disparity conditional on criminal conduct. Instead, when members of higher-crime groups are relatively “overpoliced” even after accounting for criminal conduct, Ratio/Ratio and Share/Share comparisons mask this disparity’s size or reverse its apparent direction. And when there is equal policing conditional on criminal conduct, the comparisons make it appear as though the lower-crime group is “overpoliced.”

I will demonstrate these points with examples and proofs, but the core problem can be explained fairly simply. Suppose two racial groups have different crime rates, and neither the stop probability for innocents nor the stop probability for criminals varies by race. Should we expect the racial distribution of stops to parallel that of crime (or of criminals)? Our intuitions may say yes, but the answer is no—not unless only criminals are stopped. When those stopped are not all guilty, we shouldn’t expect the distributions of stops and crime to mirror one another.

To see this point, it may be useful to consider the opposite extreme. Suppose the police were stopping everyone randomly—a policy that is not only race-neutral, but also “guilt-neutral.” Then we should expect the racial composition of stops to mirror that of the general population, not the distribution of crimes. In the real world, policing is rarely random. But police can’t perfectly target the guilty, either, nor does the law expect them to (searches and arrests require only probable cause, and stops require reasonable suspicion). And we can expect many police interactions with the innocent even when police are quite good at predicting guilt, because in most contexts, the innocent far outnumber the guilty. For example, if stop rates among the guilty are 20 times those among the innocent, but there are 20 times as many innocent people, half of those stopped will be innocent.

77 See Appendix, Proof 2.

78 The district court in the Floyd stop-and-frisk litigation in effect identified an extreme example of this problem, saying that crime-share comparisons were irrelevant because almost all those stopped were innocent. 959 F.Supp.2d at 584-85. The court held that the better benchmark was each group’s overall population, not its guilty population. Id. Note that this alternative usually raises the opposite problem—it doesn’t “account for crime” at all. We would only expect the distribution of stops to mirror the population distribution if the police stop people at random. That may have been nearly true in Floyd; only 2% of those stopped had contraband. Floyd v. City of New York, 08 Civ. 1034, Report of Jeffrey Fagan 63-65. Still, in most contexts, stop rates are surely at least somewhat higher for the guilty than the innocent. In the next Section, I discuss alternative methods that neither assume that everyone stopped is guilty nor that those stopped are a random subset of their racial groups.
But if the police’s ability to target the guilty falls somewhere between the extremes of perfection and randomness, we should expect equal policing conditional on criminal conduct to produce a distribution of stops that falls somewhere between the distribution of crime and that of the general population. So when we use the distribution of crime as the comparison point—which is what Share/Share and Ratio/Ratio comparisons do—we are overcorrecting for crime.

Scholars often criticize comparisons to general-population benchmarks—that is, raw per-capita rate comparisons—for failing to “account for crime,” arguing that the general population is the “wrong denominator.” But if the goal is to measure whether people with like conduct are treated the same way, the distribution of crime isn’t the “right denominator” either—not if the numerator includes stops of the innocent. If you look back at the definitions of D_{I} and D_{G}, the disparity measures that I proposed in Section B, you’ll notice the numerators match the denominators: in D_{I} the stops and population terms are both limited to the innocent, and in D_{G} both are limited to the guilty. But in the Ratio/Ratio and Share/Share measures, there’s a mismatch, which can make the measures very misleading.

Let’s work through two examples. (The Appendix provides many more examples and proofs.) Both examples assume a simple world with two racial groups (black and white) and two conduct conditions (innocent and guilty). I also assume the premise of defenders of policing disparities is correct: black crime rates are higher. I’ll show that it’s precisely when crime-rate disparities are large that Share/Share and Ratio/Ratio comparisons are most misleading.

The first example assumes racially equitable policing conditional on criminal conduct. Suppose the police, looking for weapons, stop pedestrians if and only if they appear to have objects in their jacket pockets. Assume that regardless of race, 50% of weapons-carriers (“guilty”) and 25% of non-carriers (“innocent”) have bulging pockets and are stopped—but black pedestrians are twice as likely to have weapons (40% versus 20%). Table 1a gives the expected breakdown of stops if the police encounter 100 black and 100 white pedestrians, and Table 1b calculates the Ratio/Ratio and Share/Share measures.

Table 1a. Example Assuming Racial Equality Conditional on Conduct

<table>
<thead>
<tr>
<th>P: 100 Black, 100 White</th>
<th>Innocent [P_{I}]</th>
<th>Innocent Stops [S_{I} = P_{I} * 0.25]</th>
<th>Guilty [P_{G}]</th>
<th>Guilty Stops [S_{G} = P_{G} * 0.5]</th>
<th>Total Stops [S = S_{I} + S_{G}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (40% Guilty)</td>
<td>60</td>
<td>15</td>
<td>40</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>White (20% Guilty)</td>
<td>80</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 1b. Ratio/Ratio and Share/Share Calculations: Same Example

<table>
<thead>
<tr>
<th>Black/White Ratio</th>
<th>Black Share of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Stops</td>
<td>35/30 = 1.167</td>
</tr>
<tr>
<td>Guilty</td>
<td>40/20 = 2</td>
</tr>
<tr>
<td>Disproportionality</td>
<td>Stop Ratio/Crime Ratio = 1.167/2 = 0.583</td>
</tr>
<tr>
<td></td>
<td>Stop Share/Crime Share = 0.538/0.667 = 0.807</td>
</tr>
</tbody>
</table>
Both disproportionality measures are well below 1, from which scholars and commentators would typically infer that black pedestrians are “understopped” once you “account for crime.” For example, the Ratio/Ratio interpretation would be that after accounting for crime, black pedestrians are 58% as likely to be stopped as white pedestrians. The Share/Share comparison meanwhile implies that the black stop share is 81% of what it “should” be. Both are very misleading, given that we’ve assumed equal policing conditional on criminal conduct. (The Share/Share measure is less spectacularly wrong here, but it isn’t always; it’s just always closer to 1.)

Now consider a second example, in which policing isn’t racially equitable. Table 2a makes the same assumptions as in Table 1a except for lower white stop probabilities. Innocent white pedestrians get stopped at a rate of just 15%, while innocent black pedestrians get stopped at a 25% rate. Meanwhile, guilty white pedestrians get stopped at a 30% rate, and guilty black pedestrians at a 50% rate. Table 2b shows the resulting Ratio/Ratio and Share/Share calculations.

Table 2a. Example Assuming Racial Disparity Conditional on Conduct

<table>
<thead>
<tr>
<th></th>
<th>Black: Assume Innocent Stop Rate = 25%, Guilty Stop Rate = 50%</th>
<th>White: Assume Innocent Stop Rate = 15%, Guilty Stop Rate = 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P: 100 Black, 100 White</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>White</td>
<td>80</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 2b. Ratio/Ratio and Share/Share Calculations: Same Example

<table>
<thead>
<tr>
<th></th>
<th>Black/White Ratio</th>
<th>Black Share of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Stops</td>
<td>35/18 = 1.944</td>
<td>35/53 = 0.660</td>
</tr>
<tr>
<td>Guilty</td>
<td>40/20 = 2</td>
<td>40/60 = 0.667</td>
</tr>
<tr>
<td>Disproportionality</td>
<td>Stop Ratio/Crime Ratio = 1.944/2 = 0.972</td>
<td>Stop Share/Share Share = 0.660/0.667 = 0.991</td>
</tr>
</tbody>
</table>

Here, the racial distribution of stops approximately equals the racial distribution of crimes. The black stop share is 66% and the black crime share is 66.7%; the crime ratio also slightly exceeds the stop ratio. These are the kinds of numbers that police departments and their supporters routinely cite to show that differences in stop rates are fully explained by crime differences. Indeed, if anything, these comparisons create the impression that black pedestrians are very slightly understopped; both disproportionality measures are slightly below 1. But that conclusion would be very misleading. Remember, this example assumes that the police are substantially overstoping black pedestrians—they are 1.67 times as likely to stop a black pedestrian than a white pedestrian with the same criminal conduct.

These problems with Share/Share and Ratio/Ratio comparisons aren’t an artifact of the particular numbers I chose. The Appendix’s proofs and additional examples show that anytime group crime rates differ and some innocents are stopped, the
comparisons are at least somewhat misleading, and under many realistic sets of facts, they can be drastically so. Specifically:

- Racially equal policing of both the innocent and the guilty always results in the higher-crime group having a lower stop/crime ratio, and a stop share below its crime share. In his circumstance, the Ratio/Ratio and Share/Share measures misleadingly suggest that the higher-crime group is less intensively policed once you account for crime.\(^{79}\)

- If there is racial disparity in average stop rates conditional on criminal conduct, disfavoring the higher-crime group, Ratio/Ratio and Share/Share comparisons always misleadingly mask its extent. Specifically, both measures will always be less than a weighted average of the true disproportionalities in the policing of the innocent and of the guilty \(D_I\) and \(D_G\) as defined above.\(^{80}\) They are also both either less than \(D_I\) or less than \(D_G\), and are often less than either one;\(^{81}\) these relationships are explored further in the next Section. In some cases, they misleadingly reverse the apparent direction of the disparity.\(^{82}\)

- If policing disparities conditional on criminal conduct disfavor the lower-crime group, the Ratio/Ratio measure always exaggerates this disparity,\(^{83}\) but the Share/Share measure is then more ambiguous. It might actually understate the disparity, especially if the higher-crime group is relatively large. This is because of the “dilution” of the Share/Share measure discussed above, the extent of which depends on relative group size.

- Ratio/Ratio and Share/Share comparisons are more misleading when group crime-rate differences are larger. On the other hand, when there is no crime-rate difference, the comparisons are fine.\(^{84}\)

- Because the problem stems from stops of the innocent, both measures get more misleading when the police are less discerning between guilty and innocent, and when more of the population is innocent. But as the number of stopped innocents moves toward zero, the Ratio/Ratio measure converges on the stop-rate ratio among the guilty \(D_G\).

\(^{79}\) See Proof 1 and all the examples in Table A1.

\(^{80}\) See Proof 3 and Table A2, Cols. 1-4; the notes accompanying Table A2 and Proof 3 discuss several alternative means of weighting the average (the proposition is true for any of them). Proof 3 applies to the Ratio/Ratio measure, but he fact that the Share/Share measure is also lower than any weighted average of \(D_I\) and \(D_G\) that is greater than 1 follows from a combination of Proofs 2 and 3: if the Ratio/Ratio measure is (while lower) still above 1, the Share/Share measure will be lower yet, and if the Ratio/Ratio measure is below 1, the Share/Share measure will also be below 1.

\(^{81}\) This follows from the fact that they are lower than the weighted average.

\(^{82}\) See Table A2, Cols. 1-2.

\(^{83}\) Again, it is always lower (in this case, farther below 1) than \(D_I\) and/or \(D_G\), and lower than their weighted average. These points follow from Proof 3.

\(^{84}\) See the last columns in Tables A1 and A2. Proofs 1, 2, and 3 all assume crime-rate differences.
None of this means it’s wrong to try to “account for crime.” But dividing by crime rates or shares is a bad way to account for it.

One might wonder whether there is some other justification for Share/Share or Ratio/Ratio Comparisons—some reason to care whether stop and crime distributions mirror one another, other than the “like cases” principle. But none seems obvious, and those who employ Share/Share or Ratio/Ratio comparisons have not articulated any. Rather, the comparisons are usually presented as though they tell us whether like cases are treated alike. And audiences are likely to interpret them that way, unless some alternative interpretation is clearly presented.85

I do not think these comparisons are deliberately misleading, though they generally mislead in a particular direction: reducing the appearance of overpolicing of higher-crime groups (usually people of color). Both comparison types are routine on both sides of the race-and-policing debate. They seem intuitively correct, and as research on other common mathematical mistakes suggests, it is remarkably easy not to notice when such intuitions are wrong.86

D. Estimating Policing Burdens Conditional on Criminal Conduct

How should researchers assess racial disparities conditional on criminal conduct, then? If we knew criminal conduct, race, and police interactions for the same sample (including those not stopped), we could directly estimate race gaps in police-interaction rates for any given conduct condition, or overall average disparity conditional on conduct.87 This may sometimes be possible—in particular, when

85 If anything, these comparisons suggest an unattractive “group desert” theory—the idea that a group’s total policing burden should track its total crime commission, without regard to which specific individuals are guilty. Or perhaps police might argue that it’s rational to attach extra suspicion to all members of high-crime groups, and to allocate stops in direct proportion to group crime rates. It’s not clear that this approach would be efficient, however, and in the next Part, I argue that it’s wrong and unconstitutional for the police to infer criminal propensity based on race. In any case, even if we identified a good reason to allocate stops in proportion to crime shares, it would still be important to recognize that doing so will mean people with the same conduct systematically face different apprehension rates depending on race. Policymakers would have to decide whether to tolerate this breach of the like-cases principle in order to serve some other objective. The literature that employs Share/Share and Ratio/Ratio comparisons has failed to highlight this conflict.

86 A famous example is the Monty Hall Problem, a brainteaser with a simple but counterintuitive solution that people (even many mathematicians) overwhelmingly resist even after it is explained. See John Tierney, Behind Monty Hall’s Doors, N.Y. TIMES, July 21, 1991 (describing 10,000 letters sent to a magazine columnist protesting her correct explanation, including many from mathematics professors). Humans are so bad at conditional probabilities that (according to a surprisingly large interspecies-comparison literature) we are outperformed on numerous tests by pigeons. E.g., Walter T. Hebranson & Julia Schroeder, Are Birds Smarter than Mathematicians?, 124 J. COMP. PSYCHOL. 1 (2013); Edmund Fantino et al., Teaching Pigeons to Commit Base-Rate Neglect, 16 PSYCH. SCIENCE 820, 820 (2005).

87 For example, one could estimate a regression, such as:

\[
\text{Stop} = \beta_1 \times \text{Black} + \beta_2 \times \text{Guilty} + \beta_3 \times \text{Guilty} \times \text{Black} + \alpha
\]

Here, \(\beta_1\) is the additive “black” effect for the innocent; \(\beta_1 + \beta_3\) is the additive “black” effect for the guilty; \(\alpha\) is the baseline for white innocents, and \(\alpha + \beta_2\) is the baseline for white guilty. The predicted probabilities could then be divided to obtain likelihood ratios; for example, \(D = (\beta_1 + \alpha)/\alpha\). A regression could also include indicators for many possible crime types or degrees of culpability. Removing the interaction terms between “black” and the crime variables would produce an overall
surveys ask respondents to self-report their criminal conduct, they can ask about policing outcomes, and a few surveys have. This approach has some limitations, including the general accuracy and sampling concerns about surveys mentioned above, plus likely heightened concerns about statistical power. But well-designed, large surveys can potentially allow individual-level estimation of policing outcome disparities conditional on self-reported conduct.

In the “accounting for crime” literature, however, researchers have typically used official police data, instead of surveys. An advantage of this approach is that police data usually cover the full set of police interactions of interest (e.g., all of a jurisdiction’s traffic stops), not just a much smaller surveyed sample. However, crime benchmarks then must come from some other source. Can these kinds of benchmark comparisons be used to assess policing disparities conditional on criminal conduct? And can we translate existing Ratio/Ratio or Share/Share comparisons into the kinds of comparisons we want?

Each of these objectives can be accomplished, but it requires an additional piece of information not usually included in benchmark-comparison studies: each group’s “hit rate,” the share of those stopped who are guilty. With this information, it is straightforward to translate existing Stop Ratio/Crime Ratio estimates into Stop Ratios for the guilty (D_G). We need to turn the “all stops” terms for each group from the Ratio/Ratio measure into “guilty stops” terms, which we can do by multiplying them by the groups’ respective hit rates (the ratios of guilty stops to all stops). More simply, we can multiply the Ratio/Ratio measure by the inter-group Hit Rate Ratio:

$$D_G = \frac{S_{G1}/P_{G1}}{S_{G2}/P_{G2}} \times \frac{S_{G1}/S_{G1}}{S_{G2}/S_{G2}} = \text{Hit Rate Ratio} \times \frac{\text{Stop Ratio}}{\text{Crime Ratio}}$$

D_G will always indicate relatively more intensive policing of the higher-crime group than the Ratio/Ratio measure does, unless the high-crime group’s hit rate is actually below or equal to the low-crime group’s, which shouldn’t happen often. If the crime-rate difference is substantial, a hit-rate ratio that cuts in the opposite direction can only happen if the police are much less accurate vis-à-vis high-crime group members—for example, much more likely to stop innocent members of that group and/or to miss guilty members (Table A2, Col. 4 is an example).

The relationship between D_G, the stop-rate disparity among the innocent, to the Stop Ratio/Crime Ratio measure is:
Here, the “Miss Rate Ratio” is the intergroup ratio of the shares of stops that are not “hits,” and the Innocents Ratio is the ratio of the groups’ innocent populations. Note that the “Crime Ratio/Innocents Ratio” proportion is necessarily over 1 (again, assuming group 1 is higher-crime). The Miss Rate Ratio is usually below 1, barring substantial policing-accuracy differences, but often not dramatically so; if hit rates are below 50%, the Miss Rate Ratio is less disproportionate than the Hit Rate Ratio. But it always cuts in the opposite direction. Hence, if D_i is lower than the Stop Ratio/Crime Ratio measure, D_i must be higher (because both multipliers in the equation above would be above 1). Simplifying the equation:

$$D_i = \frac{\text{Miss Rate Ratio}}{\text{Innocents Ratio}} \times \frac{\text{Stop Ratio}}{\text{Crime Ratio}}$$

The Stop Ratio and Innocents Ratio could equivalently both be replaced with ratios of stop rates and innocence rates (the population terms cancel).

Alternatively, we can calculate D_i and D_o if we know the Stop Shares and Crime Shares plus the hit rates for each of two groups. The Stop Ratio and Crime Ratio can first be calculated from the shares, and then the formulas above can be applied.

As it happens, race-specific hit rates are frequently reported in the policing-disparity literature. Some commentators treat racial equality in hit rates as evidence that policing disparities have no crime justification, effectively using hit rates as a proxy for crime rates. But in reality, “reported hit rates typically exceed the range of plausible crime rates,” and the relationship between hit rates and crime rates could

90 For example, suppose the black and white hit rates are 0.2 and 0.1 respectively (hit-rate ratio = 2). Then the miss rate ratio is 0.8/0.9, or 0.89. Low hit rates are common for investigative stops; the NYPD claims a hit rate of 12% for its stop-and-frisk policy (but less than 1% involve weapons).

91 The estimation of D_i may in some cases pose an empirical challenge beyond that of calculating D_o, because the “Innocents Ratio” is not always found directly in crime-benchmark data. In direct physical observation studies, like the Turnpike studies, this is no problem. In these studies, the innocent (e.g., non-speeding drivers) are counted along with the guilty. Likewise, when benchmarks come from self-report surveys, we know the rate of self-reported innocence.

But suppose the benchmark is the number of crimes reported to the police in a year with suspects of a given race. Data about, for example, the number of violent crimes each year don’t tell us how many people of any given race are, at any given time that they might encounter the police, not engaging in violent crime. Fortunately, however, the answer is “almost everyone.” Indeed, most crimes are relatively rare compared to noncriminal activity, especially the crime types included in crime-report data. So the ratio of two groups’ total populations may be a good approximation of the “Innocents Ratio.” (This is David Thacher’s implicit assumption when he calculates disparities in the burdens that NYPD’s stop-and-frisk policy imposed on the innocent. He treats all stops not resulting in arrest as innocent stops, and divides by each group’s total population. Thacher, supra note 28, at 37 tbl. 1.) In situations in which guilt rates are higher, reasonable assumptions based on the crime rate and the groups’ populations might allow a good estimate of the Innocents Ratio.

92 Dividing any group’s crime share (or stop share) by any other’s gives a ratio of crimes (or stops).

93 E.g., DAVID A. HARRIS, PROFILES IN INJUSTICE 79-84 (2002).

differ across races. For example, the Table A2 examples all assume a Crime Ratio of 2, but the Hit Rate Ratios vary from 0.56 to 2.98.

A recently prominent line of research interprets equal hit rates in just the opposite way, to imply lack of police racial bias. This approach has complicated and problematic assumptions, which are examined in detail in Part III. For now, note that equal hit rates are compatible with stark racial disparities in policing rates conditional on criminal conduct. 95 Conversely, unequal hit rates are the inevitable result of equal policing conditional on criminal conduct, if crime rates differ. These points are illustrated by the Hit Rate Ratios in the Appendix tables. 96

But if we have hit-rate and crime-rate information that we trust, we can use that information in a different way, to estimate the quantities of interest D_c and D_r. This is a big “if.” Even setting aside the crime-benchmarking challenges discussed above, accurate hit rates may be elusive. Hit-rate studies often use arrests to measure hits, but this is highly problematic. Police have broad arrest discretion, and it is nonsensical to assume, when assessing racial disparities in stops or searches, that there is no unjustified racial disparity in arrests. Nor are convictions a good “hit” measure—conviction depends on prosecutorial discretion and on police testimony. Police records of whether contraband was found could likewise be affected by disparities in search intensity or decisions to look the other way.

This problem also bedevils all existing uses of “hit rates” to assess racial disparities in policing, however. 97 If researchers do trust their hit measure, it might as well be employed in a theoretically sensible way. And some hit measures may be reasonably reliable because police have little discretion—for example, Breathalyzers that automatically record results, or crimes that are so serious that police almost never fail to arrest. When researchers doubt the accuracy of either hit rate or crime rate measures, they can use assumptions about a plausible range of hit rate ratios or crime ratios to estimate bounds on D_c and D_r. The questions posed by the “like cases” framework are empirically challenging. But they are the right questions if we want to “account for crime” in a normatively meaningful way.

95 The test’s leading advocate, Nicola Persico, has long acknowledged that the predicted equilibrium under “unbiased” policing could, depending on various conditions, be highly “unfair.” Persico, Racial Profiling, Fairness, and Effectiveness of Policing, 92 AM. ECON. REV. 1472, 1479 (2002).

96 As the Table A1 examples illustrate, if the same shares of the guilty and innocent are stopped from each group, the group with a higher guilt rate overall must have a higher guilt rate among stops. Meanwhile, in Table A2, black hit rates are higher in almost every hypothetical (which the advocates of the “outcome test” would interpret to suggest irrational bias favoring black suspects), including in Columns 1-3, in which black pedestrians are actually much more heavily policed conditional on criminal conduct. Moreover, the hit rate ratio in Column 1 is very similar to the one in Column 5, even though the directions of the policing disparities are reversed. A lower black hit rate is obtained only when we assume policing that is far less discerning for black pedestrians (Col. 4).

97 Decio Coviello & Nicola Persico, An Economic Analysis of Black-White Disparities in NYPD’s Stop-and-Frisk Program, Working Paper (2013), 13-14, acknowledge this problem, but argue that there is no evidence police use arrest discretion in racially disparate ways, because arrest rates are uncorrelated by race after controlling for “crime type” recorded on post-stop forms. This does not help. What the officer writes down is discretionary, and could be a post hoc rationalization.
III. Measuring Racial Discrimination in Police Decision-Making

What if we want to go beyond asking whether policing disparities are explained by crime commission, and instead ask whether they are driven by racial discrimination? This Part assesses this question, beginning by asking why it is constitutionally central and morally important. Section B examines causal inference problems that complicate the task. Section C considers the literature’s main approaches: the “hit-rate” test, regression studies of stops and post-stop outcomes, studies exploiting variations in ability to observe race, and lab studies of implicit biases. Finally, Section D argues for a new strategy—the use of “testers,” like those used in other antidiscrimination enforcement and research contexts—and addresses how to address practical, safety, and ethical concerns specific to the policing context.

A. The Constitutional and Moral Case Against Racial Profiling

While many causes of policing disparity raise policy concerns, the role of governmental discrimination is the key question posed by equal protection doctrine. Current doctrine precludes constitutional challenges solely premised on racially disparate impact or discrimination by private actors like witnesses. But, as I show here, police racial discrimination essentially always violates the Equal Protection Clause. It is, however, difficult to prove, which makes effective empirical strategies especially important—for parties to litigation, for courts, for Congress should it legislate under the Fourteenth Amendment, and for police departments who wish to comply with the Constitution and avoid litigation. Moreover, the disparate treatment question matters for other normative reasons as well.

Although there is a strong scholarly consensus that racial profiling should be considered unconstitutional, scholars often question whether the Supreme Court agrees. Many have critiqued the Court for leaving the door open to police reliance on race. These critics have grounds for frustration: the Court has avoided squarely deciding the Fourteenth Amendment issue and has meanwhile foreclosed Fourth Amendment strategies. Moreover, lower courts have been unwilling to second-guess police reliance on race-specific suspect identifications, even in extreme cases.

101 Notoriously, in Brown et al. v. City of Oneonta, 221 F.3d 329 (2000), the Second Circuit upheld the interrogation of 200 black men based on a white victim’s description of a black male assailant. For critiques, see Gerstman & Shortell, supra note 100, at 47; Alschuler, supra note 20, at 179-92. Oneonta's
broader equal protection doctrine leaves little ambiguity. Racial profiling (by which I mean reliance on conscious or subconscious racial generalizations about criminality, as opposed to specific suspect identifications) clearly violates the Equal Protection Clause as the Court has consistently interpreted it. 102

Scholars examining the relevant constitutional doctrine have mainly focused on the Court’s numerous adverse Fourth Amendment precedents. 103 These include Whren v. United States, holding that a traffic stop provides probable cause for a vehicle search even if the traffic violation was a mere pretext, 104 and United States v. Brignoni-Ponce, which suggested that Mexican appearance might provide reasonable suspicion of an immigration violation when combined with other factors, but not alone. 105 But these cases do not implicate equal protection claims. Brignoni-Ponce sent a confusing signal (why suggest that ethnicity may be relevant to Fourth Amendment analysis if its consideration is barred by the Fourteenth?), but it does not trump the many equal protection cases striking down decision-makers’ use of race even alongside other factors. 106 Many scholars have critiqued the doctrinal separation of Fourth and Fourteenth Amendment objections to racial profiling, 107 but its upside is that adverse holdings on the former do not preclude the latter. 108

The Supreme Court has never decided whether racial profiling violates the Fourteenth Amendment, but to say no, it would have to upend decades of doctrine. The key line of cases concerns the prohibition on “statistical discrimination.” The Supreme Court has consistently held that otherwise-impermissible discrimination

106 Scholars have suggested that Whren and related cases green-light racial profiling in car searches. See Jones-Brown & Maule, supra, at 153-57 (also citing Maryland v. Wilson, 519 U.S. 408 (1997) and Atwater v. City of Lago Vista, 532 U.S. 318 (2001)); Paulhaumus et al., supra note 36, at 242-43; Fagan et al., supra note 103, at 312. This is likely often true in practice, because allowing pretextual justifications makes it harder to prove racial discrimination. But Whren did not suggest it would be legal to rely on race—it suggested otherwise. 517 U.S. at 813 (“[T]he constitutional basis for objecting to intentionally discriminatory application of laws is the Equal Protection Clause, not the Fourth Amendment”).
cannot be justified based on group generalizations, even if those generalizations are empirically accurate. Instead, individuals must be treated as individuals.109

For example, in *Craig v. Boren*, the Court struck down a law applying different drinking ages to men and women. It was unmoved by studies showing that young men drove drunk at ten times the rate of young women, because these findings lumped all young men together.110 Similarly, the Court has struck down governmental reliance on gendered or racial generalizations about learning styles,111 juror voting,112 and workforce participation.113 All these generalizations had statistical support, but the Court made clear that this doesn’t matter: basing disparate treatment on groups’ typical tendencies is unfair to atypical individuals. The Court has carved out exceptions only for physical sex differences relating to pregnancy.114 It has never made exceptions for generalizations about behavior, and it would be shocking if it did so for racial generalizations about criminal tendencies.

This line of cases should be fatal to any attempt to justify racial profiling by arguing that profiles are empirically supported. This is so even assuming crime prevention is a compelling state interest.115 In none of the cases reviewed above did the Court assess whether the statistical generalization in question established an important government interest. Rather, the prohibition on statistical discrimination is best understood to constrain the kinds of reasoning that the government can offer to establish its interest. Otherwise, the law in *Boren* might well have survived scrutiny, for example. The government clearly has an important interest in preventing drunk driving—yet it was barred from using statistical evidence to show a relationship between that interest and the gender classification.

Moreover, law enforcement bodies have generally agreed that profiling is illegal. For example, in 2003 DOJ declared it “absolutely prohibited.”116 The remaining ambiguity in the case law may therefore be irrelevant in practice. Modern police departments don’t defend racial profiling. They deny that they engage in it.117 Most profiling lawsuits have settled on terms prohibiting it.118

But if the Fourteenth Amendment argument is doctrinally well supported and not in practice contested, why has the Fourth Amendment played a more prominent role in profiling litigation? The key reason is evidentiary: it’s hard for litigants to prove racial profiling. Individual criminal defendants raising selective-enforcement defenses face especially steep hurdles. In federal criminal cases, even getting discovery is notoriously difficult. And even if defendants can show a pattern of discrimination, they must also show that it affected their cases specifically. Statistical evidence almost never clears this hurdle alone, though it might help in combination with case-specific qualitative evidence. For these reasons, the best prospects for Fourteenth Amendment challenges to succeed are in civil cases (class actions or government enforcement actions), in which the pattern of discrimination is the issue. Such cases turn centrally on statistical evidence.

Some commentators, while acknowledging the legal importance of the disparate-treatment question, have dismissed its moral importance. Thacher, for example, describes the focus on “racial profiling” as a parochial concern of lawyers—a distraction from “substantive” equality. In fact, however, this call for a move beyond colorblindness echoes a view that has long been common in legal scholarship beyond the policing context: that equality law should primarily target group subordination, not forbidden classifications.

(quoting Chicago PD spokesman); Greg Risling, DOJ Finds Two LA Sheriff’s Stations Discriminating, ASSOC. PRESS (June 28, 2013) (describing L.A. County Sheriffs’ response to DOJ investigation); All Police to Attend Racial Profiling Class, BURLINGTON CNTRY. TIMES (June 29, 2005) (stating that all New Jersey police officers must attend training teaching unconstitutionality of profiling); Jane Prendergast, Officers’ Hearts Hold Racial Profiling Solution, Chief Says, CIN. ENQUIRER (Mar. 6, 2011) (quoting Cincinnati police chief: Profiling “is not only wrong, it’s unconstitutional. It’s illegal. We know that. We teach that.”); Letter from S.C. Kitchen to Assistant U.S. Attorney General Thomas E. Perez, (September 26, 2013), http://www.timesnewshosting.com/docs/johnson.pdf (denying profiling).

118 See Gross & Barnes, supra note 10, at 741-43. 119 See id. at 653-57, 741; David Rudovsky, Law Enforcement by Stereotypes and Serendipity, 3 U. PA. J. CONST. L. 296, 322-29 (2001); Johnson, supra note 5, at 1063-64. 120 See, e.g., KENNEDY, supra note 24, at 354 (“Research has uncovered no cases” of convictions overturned for selective prosecution, as of 1997).

121 The Supreme Court has required “some evidence” of “differential treatment of similarly situated members of other races.” Armstrong, 517 U.S. at 465-67. Identifying a “similarly situated” group may be especially difficult in policing cases: police keep no “records of instances in which they could have stopped a motorist...but did not.” Davis, supra note 100, at 437-38.

122 In principle, strong statistical evidence could allow an inference that the defendant probably would not have been stopped but for race. But courts have resisted this sort of reasoning, see Harcourt, supra note 12, at 1278, just as they are often uncomfortable inferring individual causation from statistics in other kinds of cases, see Laurence H. Tribe, Trial by Mathematics: Precision and Ritual in the Legal Process, 84 HARV. L. REV. 1329, 1349-51 (1971). In McCleskey v. Kemp, 481 U.S. 279 (1987), the Court refused to allow a defendant’s challenge to his capital sentence to rest solely on statistical findings of racial disparity in death penalty administration. This holding emphasized deference to prosecutors and juries, and could possibly be distinguished in a challenge to police racial profiling: the Court has upheld equal protection claims based on statistical evidence in some other criminal-law contexts. E.g., Castaneda v. Partida, 430 U.S. 482 (1977); Whitus v. Georgia, 385 U.S. 545 (1967).

123 Thacher, supra note 28, at 26; see supra note 33 (addressing other critics of discrimination focus).

124 E.g., Jack M. Balkin & Reva B. Siegel, The American Civil Rights Tradition: Anticlassification or
I generally sympathize with this antisuubordination view. But whether the police racially discriminate is not “merely” a legalistic concern. Racially disparate treatment adds a substantively meaningful dimension of harm. Critics of racial disparities in policing (not just lawyers) have emphasized the role of discrimination, “racial profiling,” or just “racism.” This framing has cultural resonance and moral force. For the government to generalize that people of color are dangerous, and to specifically target them for surveillance and arrest, is expressively and morally noxious, especially because such generalizations have a painful history in our culture. I am not suggesting that one should not acknowledge racial differences in crime rates. But the poisonous aspect is using those differences to justify ignoring differences within groups, making law-abiding citizens “pay for fears generated by criminals with which they are lumped by dint of color.”

The harms of racially disparate policing are thus often substantially connected to racial targeting, not just to police interactions per se. Perceptions of police racism also deeply undercut trust in the police in black communities, which may undermine police effectiveness. In short, racial discrimination may be just one morally troubling cause of racial disparity, but it’s an important one.

B. Race and the Problem of Causal Inference

Identifying the effects of racial discrimination is even harder than assessing racial disparities in policing of people with like criminal conduct. The latter inquiry need not involve causal claims; the racial discrimination question does. Answering it requires researchers to disentangle not only the role of crime but also all other potentially confounding variables. This is challenging, because race is not a “treatment” subject to manipulation. Its effects are intertwined with each individual’s

126 See BLANK ET AL., supra note 75, at 103 (stating more generally that “the broader public vision of what discrimination means [is] the treatment of two (nearly) identical people differently”).

128 KENNEDY, supra note 24, at xi.

129 See id. at 151-53; Tom R. Tyler & Jeffrey Fagan, Legitimacy and Cooperation, in RACE, ETHNICITY, AND POLICING, supra note 6, at 102-04; Weitzer & Tuch, supra note 2, at 1017-18.

130 To be sure, a “colorblind” policing objective could sometimes interfere with efforts to achieve other equality objectives, including equality conditional on criminal conduct. For example, if certain stop criteria are less predictive of guilt for one race than another, police might have to take race into account when interpreting them if they want to avoid imposing racially disparate impacts. I do not seek to resolve these dilemmas here, although my own leaning would be to permit race-conscious efforts to avoid disparate impacts, favoring a more substantive view of equality. The current Supreme Court might not agree, however. See Ricci v. DeStefano, 557 U.S. 557 (2009) (casting doubt on the constitutionality of race-conscious efforts to avoid disparate impact liability).

131 See, e.g., Lincoln Quillian, New Approaches to Understanding Racial Prejudice and Discrimination, 32 ANN. REV. SOCIOLOGY 299, 302 (defining “discrimination” as “the causal effect of race”).
EXPLAINING RACE GAPS IN POLICING

other attributes and life experiences—which may themselves have been influenced by race. Scholars have therefore debated whether the language of causal inference can be meaningfully applied to race at all.132 Perhaps we can’t sensibly ask how a person’s outcome would have differed but for her race if her entire life would have been different in that counterfactual.

This conceptual hurdle is not insuperable, however. Usually, when we ask causal questions about race (“Do police officers stop more African-Americans because of their race?”), we’re not asking about race’s total, lifelong effects, but about racial discrimination in a particular decision process.133 The counterfactual is how the decision-maker would have responded if she had instead encountered another person of a different race but otherwise similar relevant characteristics. James Greiner and Donald Rubin have suggested referring to “perceived race” to highlight this point.134 In my view, while the point is sound, there’s little harm in the shorthand “effect of race,” provided we are clear on what it means.

But isolating “effects of race” even in this narrower sense is difficult. It is not just that race resists experimental manipulation; for any given individual, it does not vary naturally either. Immutable traits defy observational researchers’ best tools for causal inference, such as panel designs (which follow individuals before and after a treatment) or quasi-experiments exploiting shocks to a treatment.135 Instead, researchers must use methods—such as regression, reweighting, and matching—that share a core limitation: their ability to support causal inferences depends on the ability to observe the potentially confounding variables.136 Because one can never really exclude the possibility of omitted variables, careful researchers often refer to the race gaps that remain after controlling for observed variables simply as “unexplained,” rather than claiming proof of discrimination.137

Still, neither policy analysis nor law requires definitive answers. For policy purposes, strong causal identification would be great, but even an analysis with weaker identification can usefully narrow down the possibilities; theoretically informed discussion can then guide interpretation of unexplained gaps. In civil litigation, the traditional burden of proof requires that the factfinder believe the best interpretation of the evidence is that discrimination probably had some effect. After

133 If one did want to examine “the effect of dynamic, cumulative discrimination,” BLANK ET AL., supra note 75, at 226, the strategies discussed here wouldn’t much help; raw disparity estimates might.

134 Greiner & Rubin, supra note 132, at 775.

135 Quasi-experimental designs \textit{can} be used to assess changes or differences in racial disparity. \textit{See}, e.g., Sonja B. Starr & M. Marit Rehavi, \textit{Mandatory Sentencing and Racial Disparity}, 123 YALE L.J. 2 (2013) (using regression discontinuity design); David S. Abrams et al., \textit{Do Judges Vary in their Treatment of Race?}, 41 J. LEGAL STUDIES 347 (2012) (exploiting random assignment of judges).

136 Regression models express some functional relationship between variables; the function is fit to data to solve for its parameters, identifying each covariate’s association with the outcome when the others are held constant. Reweighting and matching are methods of rendering groups comparable in characteristics before comparing their outcomes.

137 \textit{See}, e.g., Quillian, supra note 131, at 303.
all, non-statistical evidence of causation (and other contested facts) is often also open to multiple interpretations. While courts have sometimes demanded more clarity out of statistical evidence, certainty or even near-certainty is too much to ask for.138 Moreover, it should be unnecessary to rule out every theoretically possible confounding variable—rather, the key question should be whether the explanations for disparities that the police department gives hold up.139

In the remainder of this discussion, I assume that strong causal identification is the ideal goal of research on police racial discrimination. However, I also examine what we can learn from observational research that falls somewhat short of this goal.

C. Current Methods of Measuring Police Racial Discrimination

How might one isolate the effects of police racial discrimination? In this Section, I consider several approaches from the literature: the “hit-rate” test, neighborhood-level studies of initial stops, studies of post-stop decisions, studies exploiting variations in decision-makers’ information about race, and lab experiments on implicit biases. While I do not return to the crime-benchmark comparisons addressed in Part II, such comparisons have also often been presented as methods for assessing “racial profiling”—implying that if crime differences do not explain policing differences, racial discrimination does.140 This inference could be reasonable, but only absent plausible alternative explanations.141

1. The Hit-Rate Test

In recent years, the most prominent strategy for causal inference about race and policing has been the hit-rate test, in which some measure of the success rate of stops or searches (for example, the rate at which they uncover contraband or lead to arrest) are compared across races.142 This test, whose most prominent advocates are John Knowles, Nicola Persico, and Petra Todd,143 purports to allow causal inferences about race’s role without relying on any outside benchmark measure of criminal

138 The case that set the hardest standard was \textit{McCleskey}, in which the Supreme Court, invoking deference to prosecutors and jurors, held that “exceptionally clear proof” of discrimination was required to support a challenge to the death penalty. But it is not obvious that \textit{McCleskey}'s reasoning applies to policing at all, see supra note 122, or that it applies to civil lawsuits alleging a pattern of discrimination. \textit{McCleskey} (and every federal appellate case following it) centers on the problem of inferring discrimination in an individual criminal case from a broader statistical pattern.

139 In petit and grand jury discrimination cases, the Supreme Court has required the state to articulate reasons for its decisions and “stand or fall on the plausibility” of those reasons. Miller-El v. Dretke, 545 U.S. 231, 252 (2005); see Casteneda v. Partida, 430 U.S. 482, 494-95 (1970) (holding that this burden-shifting can be triggered by statistical evidence of disparate impact).

140 For example, the various Turnpike studies were designed to test racial profiling allegations.

141 For instance, perhaps highway troopers are not able to observe much besides speed and race.

142 See Engel, supra note 33, at 16 (describing this test as “the analytical strategy of choice [for] many researchers, police administrators, court officials, citizen groups, and other stakeholders”).

conduct—avoiding the most serious challenge of the policing-disparity literature. However, the approach relies on unattractive normative premises and improbable empirical assumptions. In Part II.D, I showed that hit-rate comparisons do not address equality in policing conditional on criminal conduct. Here, I show that they also fail to measure racial discrimination, and are not a good test of efficiency either.

The basic assumption underlying the method is that rational, “unbiased” police will try to maximize the share of their stops that successfully detect crime, and to that end, they will make use of all information available to them that bears on the probability of criminality when deciding whom to stop. If crime rates differ by race, then, rational police will take it into account, along with other signals like behavior, in deciding how “suspicious” a person is. (I will use the term “suspiciousness” to refer to the probability of criminality that the officer predicts based on all the available information.) The normative assumption underlying hit rate comparisons is that racial equality in policing doesn’t require the police to ignore race. Rather, it requires them to take race into account to the extent that it is predictive of criminality—no more and no less. The underlying theory distinguishes “taste-based” discrimination (prejudice) from statistical discrimination (use of race as a proxy for a legitimate consideration with which it is statistically correlated—here, criminality). Economists sometimes defend statistical discrimination as efficient.144

The hit rate model assumes that unbiased police will apply the same “suspiciousness” threshold for stopping people regardless of race—that is, they will stop people whose suspiciousness exceeds a certain minimum, and they won’t vary that minimum based on race. If an officer is, for instance, less willing to stop a white pedestrian than an equally suspicious black pedestrian, that would imply irrational racial prejudice—a “taste” for stopping black pedestrians. However, the model assumes unbiased officers will consider race when assessing how suspicious somebody is in the first place. If officers have correctly adjusted their suspiciousness assessments to account for racial differences in crime rates, and then have applied the same suspiciousness threshold regardless of race, we should expect the marginal hit rate—the rate of criminality uncovered among those right at that threshold—to be the same across races.

Here, however, an empirical challenge emerges. If one has a plausible measure of “hits” (a problem discussed in Part II) as well as data on the racial breakdown of stops, it’s easy enough to compute the average hit rate of a racial group and to compare those averages across races. And that’s exactly what those who employ hit rate comparisons do, sometimes after controlling for other observable characteristics. But at least as I have described it so far, the theory doesn’t predict equality in average hit rates, it predicts equality in marginal hit rates—that is, hit rates among cases that were right at the border between being stopped and not stopped.

And when there is a difference in the crime distribution between racial groups, racial equality in average hit rates does not imply racial equality in marginal hit rates.

To illustrate, consider Figure 1, which shows a hypothetical distribution of “suspiciousness” (an index based on the expected probability of crime, based on external indicia including race) for two groups with quite different crime rates; the means are 10% and 20%, respectively, and (for simplicity) both suspiciousness distributions have the same variance. Assume that an officer estimates the suspiciousness distributions below and that, on average, she has accurately accounted for the racial differences in crime rates, as well as for the predictive value of other observable characteristics. Then assume that she stops everyone whose suspiciousness level exceeds 0.15: a 15% probability of criminality. This threshold is marked by the vertical dotted line, and because it is consistent across races and her predictions are empirically grounded, the marginal hit rates among those who barely exceed this threshold should be the same for Groups 1 and 2 (15%).

However, the average hit rate should be much higher for Group 2. The average hit rate for each group is determined by the entire portion of the group’s distribution that lies to the right of the 0.15 threshold, rather than just the cases right at the threshold. For Group 1 (denoted by the diamond-checked curve to the left), this consists only of the most-suspicious 16% or so of the distribution, the great majority of whom fall below 0.2 on the suspiciousness scale. For Group 2 (denoted by the curve to the right), the bulk of the distribution falls to the right of the threshold (about 84% of the group will be stopped), and the average hit rate among this 84% will be above 0.2. Indeed, even if our hypothetical officer were engaging in taste-based discrimination against Group 2—let’s say she stops all members of Group 2, with complete indifference to their individual suspiciousness, while stopping only those members of Group 1 whose suspiciousness exceeds 0.15—the average hit rate for Group 2 (0.2) would still be higher than that of Group 1. In general, we should expect the average hit rate for higher crime groups to be higher even when the marginal hit rates are equal—so when we see equal average hit rates, it certainly

\[I \text{ have assumed a normal distribution with a standard deviation of} \ 0.05. \]
EXPLAINING RACE GAPS IN POLICING

doesn’t imply that the police are applying equal “suspiciousness” thresholds across group. 146 This “inframarginality problem” is a well-known limitation on hit-rate comparisons. It has no straightforward empirical solution, because marginal hit rates generally can’t be directly empirically measured—the data don’t tell us which individuals were barely suspicious enough to be stopped.

The major contribution of Knowles, Persico, and Todd was to develop a theoretical model that “solves” the inframarginality problem: if one accepts a number of (strong) empirical assumptions, average hit rate comparisons can stand in for marginal hit rate comparisons. The authors posit that police, seeking to maximize hit rates, will shift their attention toward groups with higher hit rates. 147 Those groups will respond by reducing their crime rates, which leads to police stopping them less, and so forth. At equilibrium, if policing is unbiased, all groups have the same hit rates—and the same crime rates (the crime rates are the hit rates). On this view, unequal hit rates suggest racial bias: police who fail to shift stops to the higher-rate group must irrationally prefer to stop the other group. 148 Equal hit rates suggest no bias. 149 The inframarginality problem disappears because the Knowles et al. model assumes away differences in crime rates and in the distributions of suspiciousness. Indeed, it assumes that crime rates equalize not just across races (absent police prejudice), but also across all the other traits or behaviors that police observe—so at equilibrium, these traits tell police nothing, and all individuals are equally likely to be criminals; all cases are marginal. 150 Even at an equilibrium that does include police prejudice, within each racial group, all cases are marginal—so each group’s average hit rate is equal to its marginal hit rate and to its crime rate.

Bracketing for a moment the empirical questions about this model, an initial problem should already be apparent to readers: the normative account of “unbiased” policing on which hit-rate comparisons rely is wholly inconsistent with what constitutional doctrine requires. As the previous Section outlined, the Supreme Court has consistently rejected the distinction between taste-based and statistical discrimination: it is no defense that police were “correct” to consider race because it really is statistically correlated with criminal conduct. It would thus be inappropriate for courts to use hit-rate comparisons to test for unconstitutional discrimination, as some have proposed. 151 The test embraces race-based policing and racial

146 One could imagine exceptions, depending on the variance and skew of the respective suspiciousness distributions.
147 See Knowles et al., supra.
150 See Knowles et al., supra note 147, at 209-12.
generalizations about criminality, which I also critiqued in the previous Section on policy grounds. Moreover, equal hit rates are also consistent with stark differences in treatment of those with the same criminal conduct, as Part II.D demonstrated. It is hard to conceptualize “equality in marginal hit rates” as a meaningful measure of equality at all, in my view.

But is it a measure of something else we might value, like efficiency? Probably not. Even if we accept its strong empirical assumptions (which I discuss below), the test does not speak to whether police are minimizing crime, much less maximizing total social utility. Rather, under strong assumptions, it measures whether they maximize arrests (which are usually the measure of “hits”). Maximizing arrests and minimizing crime are not synonymous. A race-conscious crime-minimization strategy would have to focus not on hit rates, but on responsiveness to policing. As Bernard Harcourt has shown, policing that targets higher-crime groups can actually increase crime if those groups respond less favorably to police presence.152

Some of the test’s leading proponents have acknowledged this point, but have argued that officers’ career incentives favor maximizing arrests, not reducing crime, so from their perspective, maximizing hit rates is rational.153 Descriptively, this could be right. But why should researchers or policymakers share this objective? Essentially, the hit-rate model tests whether officers are racially discriminating in a way that serves their career goals, and not in other ways that do not. A police department that “passes” that test should hardly be proud of it.

Even as a test of whether police maximize arrests, the approach may tell us little, because it depends on dubious empirical assumptions. First, it assumes the hit measure is itself untainted by discrimination, a problem discussed in Part II. Second, it assumes police accurately track hit rates by race and shift stop patterns accordingly. This is probably rarely true.154 Third, the model assumes that potential criminals know their stop probabilities, update that information when the police shift stop patterns, and change their behavior accordingly. But potential criminals actually face highly ambiguous information about detection rates,155 and when those rates change, they often don’t adjust their behavior proportionally.156 Fourth, the model also assumes officers simultaneously track hit-rate differences across all other characteristics and behaviors that they observe and adjust stop rates accordingly, and that individuals respond such that equal-hit-rate equilibria are produced across all those characteristics and behaviors. Fifth, the model does not overcome the key problem of omitted variable bias. The discrimination being measured could be a “taste” for an unobserved race-correlated trait, not race itself. A hit-rate model can

152 Harcourt, supra note 12, at 1296-1307.
153 Persico, supra note 95, at 1473-74; Coviello & Persico, supra note 97, at 6-11 (explaining that the test doesn’t work for allocation of police among precincts, which likely does aim to reduce crime).
154 Only recently have some departments tracked stops and searches by race, and it’s unlikely that officers regularly calculate hit rates and understand how to interpret them.
156 Lochner, supra note 155, at 29; see also Engel, supra note 33, at 25 (raising a similar criticism).
include control variables to account for such possibilities, but in this sense it is no better or worse than other observational methods for measuring discrimination.157

Of course, economic models often make simplifying assumptions, and highly stylized models can often produce useful theoretical insights. And none of this model’s assumptions are on their face entirely implausible: police probably pay some attention to race-specific hit rates; citizens no doubt have some information about their stop probability, and so forth. Still, here there are a lot of strong assumptions, which in the aggregate could introduce a lot of error. Moreover, the assumptions may be differentially wrong across races—for example, citizens of different races could have differentially inaccurate perceptions of their stop probabilities—which could introduce systematic bias. There are good reasons to believe this model is not just a little bit off the mark, because it makes predictions that are demonstrably very far from accurate. Perhaps most notably, the model predicts that each group’s hit rate will equal its crime rate,158 but observed hit rates often vastly exceed plausible underlying crime rates.159 Presumably, this is because the police are able to observe characteristics or behaviors that help them to assess suspiciousness—but the model predicts improbably that crime rates will equalize across all such observable characteristics, such that officers’ observations mean nothing at all.

Even without the strong assumptions of the model, hit-rate comparisons might still sometimes tell us something useful (at least if we believe the “hit” measure, or can make assumptions about the direction of its bias). But interpreting them meaningfully requires crime benchmark data after all—at least good enough data to make directional assumptions, i.e., which group has a higher crime rate. Moreover, what hit-rate comparisons tell us will often not be consistent with the way they’ve been interpreted. When there are equal hit rates across races despite racial differences in crime rates, we can’t conclude that the police are “unbiased” even in the narrow sense of avoiding taste-based discrimination. To the contrary, as the discussion of Figure 1 above suggests, if we see equal hit rates, a plausible explanation is that the police threshold for stopping members of the higher-crime group is lower. Likewise, if we see lower hit rates for the higher-crime group, it even more strongly suggests that the police are applying a lower threshold for stopping them. On the other hand, if we see higher hit rates for the higher-crime group, that doesn’t tell us that the police are discriminating in their favor; to the contrary, it’s what we should expect absent taste-based discrimination.160

157 It is often said, even by critics, that the model’s main advantage is that it avoids omitted variable bias. See, e.g., Childers, supra note 148, at 1033-35; Engel, supra note 33, at 16; Ayres, supra, at 579. This is a strange claim, because the model cannot empirically distinguish between racial discrimination and discrimination based on unobserved race-correlated traits; it assumes away the latter.

158 See Coviello & Persico, supra note 97, at Appendix 11. This is a consequence of the equilibria assumed across all other traits; see supra note Error! Bookmark not defined. See Persico, supra note 95, at 1473 (“At equilibrium it cannot be that one group has a lower fraction of criminals.”).

159 See Banks, supra note 94, at 583; Harcourt, supra, at 1307-08. NYPD’s stop-and-frisk program may be an exception; see supra note 78.

160 Some suggest interpreting the model’s estimate of “taste-based” discrimination as a lower bound for unconstitutional discrimination. E.g., Childers, supra note 148, at 1028. This might be plausible
EXPLAINING RACE GAPS IN POLICING

If we believe the hit measure, then if we see equal hit rates among groups with different crime rates, it does tell us one thing for certain: the higher-crime group is being less accurately policed. Either its innocent members are being overpoliced, relative to the innocent of other groups, or its guilty members are being underpoliced, or both.\footnote{YPD, for example, has cited studies showing both racially equal hit rates, Floyd, 959 F.Supp.2d at 450-53, and higher crime rates for people of color, id. at 584. In combination, these claims don’t make NYPD look good. The likeliest interpretation is that they are greatly overstopping innocent people of color.} Differential accuracy in policing is itself another form of inequality, although taken alone it does not tell us whether unconstitutional discrimination is taking place.

In short, the hit-rate approach, despite its mathematical elegance, is misguided. Some of the concerns raised here have been raised by others and conceded by the model’s creators—but these concessions are quite serious, and go to the heart of whether we should trust the model or care about the claims that emerge from it. The test’s continued prevalence is puzzling, and presumably stems from the perceived absence of viable alternatives. But in my view, several of the approaches reviewed below are superior despite their limitations; and in Section D, I propose a new alternative.

2. Neighborhood-Level Studies of Stop Probability

As discussed above, for the most part we lack individual-level, general-population data about underlying criminal conduct, a problem for studies of initial stop probability. It might be possible to construct data sources (especially self-report surveys) that include crime information, stop information, and other potential confounding variables; the self-report surveys discussed in the previous Part have focused on arrests. For now, however, regression studies of initial stop probability have generally focused on neighborhood- or precinct-level disparities, there are plausible crime benchmarks available. Researchers can study whether police appear to be treating minority neighborhoods differently, and control for reported neighborhood crime and other neighborhood characteristics. Such studies cannot assess the effect of individual race on stops. But they represent the best current strategy for assessing whether neighborhoods are treated differently based on race.

A good example is the analysis of precinct-level disparities presented in the report of the plaintiffs’ expert, Jeffrey Fagan, in the Floyd stop-and-frisk litigation.\footnote{Floyd v. City of New York, 08 Civ. 1034, Report of Jeffrey Fagan 30-34.} Fagan’s analysis regressed precinct stop rates on various racial groups’ population share; controls included crime complaints the previous quarter, neighborhood socioeconomic and other demographic characteristics, and size of the precinct’s

\footnote{If we believe the hit measure, then if we see equal hit rates among groups with different crime rates, it does tell us one thing for certain: the higher-crime group is being less accurately policed. Either its innocent members are being overpoliced, relative to the innocent of other groups, or its guilty members are being underpoliced, or both. Differential accuracy in policing is itself another form of inequality, although taken alone it does not tell us whether unconstitutional discrimination is taking place.}

\footnote{YPD, for example, has cited studies showing both racially equal hit rates, Floyd, 959 F.Supp.2d at 450-53, and higher crime rates for people of color, id. at 584. In combination, these claims don’t make NYPD look good. The likeliest interpretation is that they are greatly overstopping innocent people of color.}
police force. The report found that black and Hispanic population share strongly predicted stop rates, and the district court agreed.

Crime rate controls in regressions could, in principle, could raise concerns like those explored in Part II. A neighborhood’s stop rate incorporates stops of the guilty and the innocent, so we shouldn’t expect it to be proportional to the neighborhood crime rate if individuals are stopped at equal rates across neighborhoods conditional on criminal conduct. But our focus in this Part is whether the police are racially discriminating, not whether individuals with like conduct are being treated alike, so it makes sense to control for other factors that the police are taking into account. And when a department is making inter-neighborhood police allocation decisions, it very likely does consider neighborhood crime rates.

Neighborhood regressions are affected by two other by-now-familiar problems: limited crime data and omitted variable bias. So researchers should not claim to have “proven” discrimination or its absence decisively (although, again, results need not have a definitive causal interpretation to be useful).

3. Individual-Level Studies of Post-Stop Decisions

Some studies focus on disparities in searches, arrests, or other sanctions among stopped persons, controlling for other defendant and neighborhood characteristics and sometimes for the stop justification recorded by the officer. Beyond the general omitted variable concern, there are two other serious concerns that complicate interpretation of these studies: possible sample selection bias and biases in control variables. Both problems stem from the possibility of racial discrimination in initial stops. When studying possible post-stop discrimination, one can’t just assume that the stop decision by the same officer was unbiased.

This is the mirror image of one of the problems discussed above with hit-rate studies, which assume that post-stop outcomes are objective measures of whether the stop was valid.

163 Id. The force size control means that the model does not test discrimination in allocation of police among precincts. An alternative model omitted this control, and estimated larger race gaps. Id. at 36. 164 Id. at 32-34. The magnitudes suggest that moving from an entirely white neighborhood to an entirely black or Hispanic neighborhood would, other factors equal, nearly double the stop rate.

The plaintiffs’ additional multilevel models assessed racial disparities within precincts as well. Id. at 40-45. These models do not have individual-level controls for criminal conduct or other possible individual-level confounders, which is a weakness from a causal inference perspective. On the other hand, if NYPD really was stopping people essentially at random, crime controls may have been unnecessary, for reasons discussed supra note 78.

165 Floyd, 959 F.Supp.2d at 560. 166 The math is not identical, because here the regressions include more variables and vary in functional form; many don’t model the relationship between variables as a likelihood ratio.

167 One cannot similarly defend race-specific neighborhood crime controls, which the NYPD argued for in certain analyses in Floyd. 959 F.Supp.2d at 584. Reliance on overall neighborhood crime rates is unconstitutional; reliance on race-specific group generalizations is not.

169 This problem also arises in studies of post-arrest disparities. See supra note 16.
If researchers don’t know whether and to what extent there is racial discrimination in the initial stop decision, it can be hard to interpret post-stop disparities, because the samples of stopped persons of different races may differ in unobservable ways, such that comparisons of their outcomes are not apples-to-apples. For example, consider Smith and Petrocelli’s study of Richmond traffic stops. After controlling for officer and defendant traits and the stop location’s crime rate, they found that among those stopped, minority drivers were substantially less likely to be ticketed or arrested. What does that finding mean? The authors acknowledge the ambiguity, offering two possible interpretations: first, that the police discriminated in favor of minorities in stops, other factors equal; or second, that they sanctioned minorities less often because other factors were not equal: more minorities had been unjustifiably stopped (an interpretation that shares the intuition of the hit-rate studies). Notice that these interpretations are effectively opposite, and choosing between them requires assumptions about stop decisions. One solution to challenges like this is to combine analyses of post-stop outcomes with analyses of stop disparities, allowing estimates of unexplained post-stop disparities to be corrected for sample selection due to disparate stops. But this is only viable when there is a sound method available for analyzing stops.

The literature on post-stop disparities also illustrates the importance and difficulty of choosing the right control variables. Again, we see more variations on a by-now familiar theme: researchers often estimate biases in police decisions while assuming that other police decisions are unbiased. For example, analyses of search rates often control for whether the individual is arrested or otherwise sanctioned. The apparent rationale is that arrests and sanctions reflect conduct differences, and/or that searches incident to arrest are not discretionary. But arrest and sanction decisions are themselves discretionary (and thus potentially discriminatory). Moreover, some arrests result from searches, not vice-versa, and some arrests may be motivated by the desire to carry out a search incident to arrest. When studying search decisions, it’s inappropriate to control for something that’s itself an outcome of the search decision; doing so likely biases disparity estimates downward.

More difficult dilemmas are posed by efforts to control for behavior as recorded by officers. For example, a Cleveland study found that officers more often described black drivers as noncompliant or disrespectful; arrest disparities disappeared after

170 Smith & Petrocelli, supra note 4, at 19-20.

171 The researchers posit that the police knew they were being studied and deliberately chose to err in this direction to avoid accusations of racism.

172 For example, two studies have compared traffic stop rates to violation rates measured via physical observation, then analyzed post-stop outcomes. See Engel et al., supra note 53, at 157 (finding that black and Hispanic drivers faced triple whites’ search probability); Alpert et al., supra note 54, at 47 (finding no search-probability difference). Neither study’s post-stop analysis corrected for sample selection, though in Alpert et al.’s study, this made sense because no stop disparity was found. Both studies’ analyses of stop disparities are subject to the interpretive concerns raised in Part II.

173 See e.g., Alpert et al., supra note 54, at 47 (arrest); Pickerill et al., supra note 33, at 9-19 (citations).

174 Likewise, it is misleading to refer to searches incident to arrest as “low-discretion” searches, e.g., Pickerill et al., supra note 33, at 15, given that the arrest decision itself is highly discretionary.
controlling for these descriptions. The RAND study of NYPD’s frisk, search, and sanction rates similarly controlled for “evasiveness, … appearing to be casing, acting as a lookout, wearing clothes consistent with those commonly used in crime, making furtive movements, acting in a manner consistent with a drug transaction or a violent crime, or having a suspicious bulge.” But officers’ descriptions of these traits could be affected by race, or by the search or sanction decision itself (they could be post hoc justifications). These control variables could thus filter out part of what researchers are trying to measure. Other studies exclude such subjective factors from their models. I believe this is the better choice, but it does risk omitted variable bias if the descriptions reflect real differences.

As discussed above, a few self-report surveys (generally focused on youth) have included both criminal conduct and arrest questions, and these also ask a variety of other questions that relate to some potential confounding variables. It is possible to use these surveys to try to disentangle race’s effects from those of other variables predicting arrest. These studies are not affected by sample selection concerns stemming from stops, because their samples are not confined to those stopped. However, they are still subject to concerns about omitted variables and about use of inappropriate controls. If a study uses only self-report information, it may omit factors relevant to police decisions but not known to the respondent (or asked about by the survey). Self-report data can sometimes be linked to official outcome data, but this does not really help with the omitted variable problem, because this official data won’t cover people the police did not file reports on.

There are no perfect choices. Ideally, researchers will be able to make assumptions about selection bias and choice of control variables that have theoretical support, and will investigate whether their estimates are robust to differing choices on difficult model specification questions. Careful observational studies of post-stop outcomes are potentially informative, but researchers must remember their limits.

4. Exploiting Variations in Enforcers’ Information About Race

Some studies take advantage of variations in the information about race that is available to law enforcement. A couple have compared officers’ traffic enforcement decisions to truly race-blind decisions: traffic-camera citations and citations issued via aerial surveillance. These are very informative designs, analogous to strong studies on other discrimination questions—for example, research demonstrating a spike in hiring of women when orchestras adopted blind auditions. A limitation is

175 Robin S. Engel et al., Citizens’ Demeanor, Race, and Traffic Stops, in RACE, ETHNICITY, AND POLICING, supra note 6, at 297-99.
176 Ridgeway, supra note 168, at 34-35.
177 See, e.g., Kirk, supra note 88.
that race information is not the only difference between the decision processes: automated and aerial enforcement target only particular unlawful behaviors, whereas human officers can observe various potential violations. This problem parallels concerns about traffic benchmark studies that focus on a single speed cutoff.

Several traffic-stop studies have exploited variation in race information in circumstances that are arguably more similar: day and night. The studies compare stops at the same clock time but on either side of Daylight Savings Time transitions, such that they fall either just before or after nightfall. The intuition is that if higher black stop rates are driven by racial discrimination, the disparity should be reduced at night, when drivers’ race is harder to see. Studies in Portland and Cincinnati found no reduction in disparity at night, concluding that disparities were not caused by racial discrimination. Studies in Minneapolis and Syracuse reached the opposite conclusion; the Syracuse study, unlike the others, accounted for variations in artificial light. These studies are very clever. But one interpretive problem is that darkness (not just clock time) might affect driver or police behavior through other channels, which the method cannot disentangle from the effect of reduced race information.

Still, the general strategy of exploiting variations in race information is promising. However, its potential is limited to narrow contexts: those in which enforcement decisions can be made without close-range observation of suspects.

5. Lab Experiments on Implicit Biases

Aside from these observational approaches, many lab experiments demonstrate the prevalence of “implicit racial bias,” including the association of blackness with criminality. For example, Eberhardt et al. showed that police subjects who were primed subconsciously with crime-related images then paid disproportionate attention to black faces. Crime-primed officers (but not non-crime-primed officers) also tended to pick the wrong black face out of a lineup—a more racially “stereotypical” black face. A subset of this literature tests “shooter bias,” using

181 See Ridgeway & MacDonald, supra note 6, at 183 (citing these studies and raising this concern).
184 Darkness certainly affects driving behavior, and could also affect police tactics, or police perceptions of black criminality. In general, fear of crime is dramatically higher at night. E.g., Kathleen A. Fox et al., Gender, Crime Victimization, and Fear of Crime, 22 SECURITY JOURNAL 24 (2009).
187 Id. at 887-88; see also Heather M Kleider et al., Looking Like a Criminal, 40 MEMORY & COGNITION 1200, 1200 (2012) (reaching similar findings with student subjects).
computer simulations; subjects are asked to “shoot” armed characters but not unarmed ones. These tests have found that players pick the right response faster if the image matches stereotypes (armed black or unarmed white characters).188

These studies are randomized experiments—the “gold standard” for causal inference. Many are quite small. But outside the lab, Internet-administered implicit bias tests have been taken by millions of people. Some test the association between blackness and weapons, which is prevalent: one analysis found that 72% of respondents showed this association, and only 9% showed the reverse.189 Internet administration means test-taking conditions and samples are not controlled and respondents are not blind to the study’s purpose. But people who choose to test themselves might be less biased than average, and most respondents are presumably trying to achieve an “unbiased” score. Moreover, tests that use subconscious primes and test quick reactions aren’t easy to “game.”

This research strongly indicates that implicit racial bias is prevalent, including among police, but certainly not limited to them. Police and civilian subjects score similarly, and on some tasks police make fewer mistakes overall.190 As Tonry puts it, given the bias found among “every imaginable group in the population, it would be remarkable if criminal justice practitioners were not affected.”191 Surveys have also shown widespread tendencies to explicitly associate blackness with criminality,192 as well as overt endorsement of racial discrimination in other areas among a shrinking but still nontrivial subset of white respondents.193

The great unknown is how these phenomena translate into real-world decision-making by police.194 While researchers have not yet linked implicit bias scores to real-world policing outcomes, such studies may be on the horizon. There are limitations to this approach, despite its promise: while the tests themselves are controlled experiments, using their results to explain real-world outcomes involves the usual causal-inference challenges of observational research.195 Moreover, the scores’ explanatory value may underestimate race’s total effects on officer decision-making.

190 Joshua Correll et al., Across the Thin Blue Line: Police Officers and Racial Bias in the Decision to Shoot, 92 J. PERSONALITY & SOCIAL PSYCH. 1006; see generally Correll et al., supra note 188 (reviewing literature).

193 See, e.g., Frank Newport, In U.S., 87% Approve of Black-White Marriage, vs. 4% in 1958, http://www.gallup.com/poll/163697/approve-marriage-blacks-whites.aspx (reporting 2013 poll showing that only 84% of white Americans approve of interracial marriage).

194 E.g., BLANK ET AL., supra note 75, at 72 (“Laboratory effects…can rarely tell us the extent to which naturally observed disparities are the result of discrimination.”).

195 For example, an officer’s experiences could influence both her IBT scores and her stop practices.
because they test only specific subconscious mechanisms. Still, this research is a promising new line of inquiry into one plausible mechanism for disparities.

E. Testing Racial Profiling

Despite decades of effort, our current methods of evaluating police racial discrimination leave much unknown. I propose a new method to supplement the existing toolkit. “Auditing” refers to field studies that compare the treatment of paired “testers” who are similar but for a characteristic of interest (and here I shall use the term “auditing” to refer to the general method, and “testers” to refer to the people carrying it out). Such methods are used often in discrimination research and civil rights law enforcement in areas such as employment, housing, and lending. I propose to use testers (probably undercover police) to interact with police or to stage behavior that could attract their attention. Although it raises potential ethical, safety, legal, and political concerns, which I address here, this approach has substantial promise, capturing most of the advantages of lab experiments while directly testing real-world behavior.

1. Auditing in Research and Civil Rights Enforcement

A good example of the auditing approach is Ayres and Siegelman’s study of race and sex discrimination by auto dealers. The authors matched white male testers with black male, black female, and white female counterparts based on age, education, and assessed attractiveness. The testers all wore similar clothing and drove similar cars to the dealerships, where they negotiated prices on cars; black testers got substantially worse offers. Other studies have used similar methods to study housing and employment markets, plus various other phenomena—for example, a recent study found that drivers are less willing to yield to blackjaywalkers.

Some studies manipulate only written information, such as employment applications, student emails to professors, and writing samples. Such designs

197 Id. at 306, 319. The evidence of gender discrimination was less clear.
200 E.g., Marianne Bertrand & Sendhil Mullainathan, Are Emily and Greg More Employable than Lakisha and Jamal?, 94 AM. ECON. REV. 991 (2004); Pager, supra note 198, at 942-43 (reviewing studies).
202 Arin N. Reeves, Written in Black & White: Exploring Confirmation Bias in Racialized Perceptions of Writing Skills, NEXTIONS 4-6 (Apr. 4, 2014).
allow true experimental manipulation of race and gender, which in-person auditing doesn’t quite achieve: one can randomize cases between testers, but one can’t make the same tester white in one case and black in another. Instead, in-person auditing depends on careful matching and training to minimize within-pair variation.

No similar studies address U.S. law enforcement. In 1994, one criminal defendant introduced evidence from testers that he had hired to assess whether race affected Border Patrol stops. But the experiment was tiny, and the unpersuaded court observed that many conditions had not been held constant.203 A Mexico City study used testers who committed illegal left turns to test socioeconomic status effects on police demands for bribes.204 Another study focused on private party suspicions of crime, testing store clerks’ reactions to white and black shoppers.205 An ABC News mini-experiment likewise tested private observers: actors cut the lock off a bicycle, and passerby reactions to the black actor were much more hostile.206

The use of testers is also a well-established civil rights enforcement strategy. In the 1950s, testers brought suits challenging public transit discrimination, and the Supreme Court upheld their standing.207 Testers have played a prominent role in housing discrimination enforcement; the federal government has funded large tester studies and backed tester lawsuits brought by local fair housing associations.208 Testers have also brought challenges to lending discrimination,209 and the Equal Employment Opportunity Commission has endorsed their use to challenge hiring discrimination, though few cases have been brought.210

2. Possible Research Designs in the Policing Context

Here, I list a few examples of research designs, leaving the details to be tailored to the city and police force. This list is merely illustrative; below, I will discuss more general research design considerations.

Open Container/Minor in Possession. Testers could walk past beat officers carrying a container of liquid, such as a soda bottle that resembles a beer bottle, testing whether they’re asked what’s in it. If the containers do not actually contain alcohol, suspicion could be immediately dispelled.

204 Brian J. Fried et al., Corruption and Inequality at the Crossroad, 45 LATIN AM. RES. REV. 76 (2010).
206 ABC, What Would You Do? (Bike Thief), http://www.youtube.com/watch?v=S0kV_b3IK9M.
EXPLAINING RACE GAPS IN POLICING

Loitering. Testers, in same-race pairs, could hang out in public, testing whether police approach. To increase rates of police interactions, testers could engage in further “nuisance” activity, like playing music or smoking, or wear bulky clothing.

Casing. Testers could wait outside jewelry or other stores, looking in—behavior that could be construed either as “window-shopping” or “casing.”

Bike or car theft. Testers could break a bike lock or break into a car using a coat hanger—like the ABC News video described above, but larger-scale. In the car example, testers could carry the registration so as to dispel suspicion quickly. A challenge will be objectively differentiating hostile interactions from offers to help.

Traffic violations. Testers could break traffic laws and see if they get stopped (and searched). The specific traffic violations could be among those that would pose little or no danger—for example, expired or missing license plates.

Checkpoints. Testers could simply pass through law enforcement checkpoints, such as at customs or airport security. Outcomes could include time elapsed and diversion for extra searches. Agency cooperation, while not essential, would help; it would allow access to the information agents obtain when they run individuals’ identification.

Manipulation of Victim Reports, Police Files, and Training Exercises Other strategies could avoid in-person police encounters. “Victims” (perhaps themselves of varied race) could call in crime reports with varied suspect race, to test differences in dispatchers’ response (assuming a mechanism is in place to quickly cancel the investigation). Race could also be manipulated in training exercises involving assessment of case files or descriptions. Manipulation of police files could also be used to test prosecutors’ charging or intake decisions.

Responding to Citizen Complaints About Police. Another question of interest is how police departments respond when police are accused of wrongdoing. Officers that staff citizen outreach or internal affairs departments could be tested to see if they respond differently to complaints about officers depending on the complainant’s race.211 The test should focus on initial intake, with a mechanism for stopping the ensuing investigations.

3. General Research Design Considerations

Is auditing the police realistic? There are some good reasons that this hasn’t been done before,212 but I believe these can be addressed with careful research design. Here, I address several objectives that researchers must balance (safety, legality,

212 Indeed, aside from the Beasley defendant’s effort, *see supra* note 203, it has hardly been suggested. One scholarly piece and one news article each give the idea a sentence or two. Pamela S. Karlan, *Race, Rights, and Remedies in Criminal Adjudication*, 96 MICH. L. REV. 2001, 2008 (1998); Emily Badger, *Why It’s So Hard to Study Racial Profiling by Police*, WASH. POST, April 30, 2014. Reviews of methods for studying racial profiling omit it; for example, Blank et al. don’t mention auditing in their chapter on police, *supra* note 75, at 186-204, even though they endorse it for other contexts like housing, *id* at 103-117.
importance, methodological rigor, statistical power, and cost concerns), and discuss how some of the specific designs suggested above can address those objectives.

Safety. A paramount concern is minimizing risk to testers, police, and third parties. The illustrative research designs suggested above involve no serious law-breaking, nor do they suggest a violent situation. They are not designed to test arrest probability, but to potentially elicit relatively minimal police interactions. Testers must be trained to be absolutely cooperative. The safest approach would involve law enforcement participation: voluntary or court-ordered police department self-monitoring or outside civil-rights agency investigations. Ideally, testers could be undercover agents—people who regularly carry out far riskier work than this—and police backup could be ready to intervene if any safety threat arises. Even with these precautions in place, safety might argue for picking some of the designs above over others—in particular, staging a possible car break-in might plausibly elicit a more dramatic confrontation either with police or private citizens than is desired.

The designs proposed below also pose minimal risk to the officers being studied. With just one or two interactions with each officer, they would be used to diagnose broad patterns, not to identify individual “bad apples.” They also involve very minimal officer time, minimizing distraction from ordinary public-safety duties.

Legality. The criminal law constrains staging of actual crimes, lying to the police, and recording of interactions. 213 This is another advantage of governmental involvement. Undercover police routinely participate in otherwise-criminal activity and enjoy effective immunity from prosecution. 214 Private testers can’t be asked to commit serious crimes, but might choose to risk minor violations, as did researchers in several studies mentioned above: Lamberth’s Turnpike study, the jaywalking study, and the Mexico City bribery study. Most of the designs proposed above involve no lawbreaking or lying, just potentially suspicious activity; the traffic violation design meanwhile involves only minor, non-dangerous lawbreaking.

Importance. Studies should focus on contexts in which there is reason to suspect discrimination (for example, large raw disparities, or citizen complaints) and in which discrimination would have meaningful consequences. But such contexts need not involve serious crimes. Misdemeanor enforcement can result in detention and substantial collateral consequences, can be highly stressful, may be a pretext to look for more serious criminality, 215 and may be a method of expanding the surveillance “net,” exposing arrestees to more police interactions in the future. 216

215 See supra note 108 (discussing Whren). Arrestees may be searched without warrants.
EXPLAINING RACE GAPS IN POLICING

Methodological rigor. The most obvious requirement for effective auditing is that the deception work. The interaction should thus be quite ordinary, brief, and forgettable—as the designs suggested above would be. Observations should be distributed across police beats and shifts and across time, so individual officers are unlikely to notice patterns.

The primary threat to causal inference from auditing studies is tester heterogeneity, so testers should be matched carefully. Subtle differences may remain, but training combined with simple, easy-to-replicate “scripts” can make these less likely to affect outcomes. Analyses could focus on outcomes, like whether any interaction occurs, that are unaffected by subtle differences in conversational styles. Optimally, the testers should be blind to the study’s purpose (for example, they could be told they are testing enforcement without mentioning the racial dimension), though it might be hard to hide this purpose from testers successfully. If so, testers’ activities could also be recorded and later coded by persons who are blind to the purpose.

One possible interpretive challenge is discerning whether racial differences in police actions might result from disparities in citizens’ calls to the police, rather than police discrimination. With police department cooperation, this mechanism could be teased out, because the police could collect information on citizen calls.

Statistical power and cost. The sample size must provide sufficient statistical power to produce reasonably precise estimates. Ideally, this means at least hundreds of observations—a plausible number (large cities have thousands of officers), provided the tests are spread across beats and shifts. Many published auditing studies have much smaller samples, allowing them only to detect large effects, and even then, imprecisely. Although larger samples produce greater power, they cost more, and may increase the risk of police noticing patterns. This is another reason to use designs that involve low-intensity, brief, forgettable interactions—they can be repeated more often at reasonable cost.

218 See Pager, supra note 198, at 111-12, 123-24. But researchers should avoid too-perfect matches on traits that themselves signify race (e.g., hair). See Riach & Rich, supra note 198, at F483-F484.
219 See, e.g., Ayres & Siegelman, supra note 196 (using blind testers).
220 Power analyses are typically framed in terms of hypothesis-testing, wherein power is the probability of obtaining a statistically significant result if the “true” effect is of a certain size. Power depends on sample size, the size of effect one seeks to detect, the statistical significance threshold, and (for binary outcomes) the baseline frequency of the outcomes.
221 Sample-size calculators are widely available; they require assumptions about effect size. For example, if one seeks 80% power with a 95% confidence level, assuming the true probabilities for the two groups are 30% and 40% respectively, a common power formula requires a total sample size of 708. See “Power (Sample Size) Calculators,” https://www.sealedenvelope.com/power/binary-superiority/. If the probabilities were 30% and 50%, the sample size required would be smaller (182).
222 For example, the Chicago police department has 279 distinct beats, each patrolled by eight or nine officers. Chicago Police Department, “Beat Officers,” https://portal.chicagopolice.org/portal/page/portal/ClearPath/Get%20Involved/How%20CAPS%20works/Beat%20Officers.
223 E.g., Fried et al., supra note 204 (43 tests); Schreer et al, supra note 205, at 1438 (31 tests, 6 stores).
4. Advantages and Limitations

In real life, race mediates the lives people lead, but auditing measures disparate treatment of individuals who are doing the same thing in the same places. This is both a strength and a limitation. On the one hand, it enables sound causal inferences: if we eliminate differences other than race, we can more confidently attribute disparate outcomes to racial discrimination. Auditing designs would be much better tailored to isolate the effects of racial discrimination than regression studies and other observational approaches. If testers are matched and trained well, it could approximate a true experiment, but in a real-life setting, not a lab.\(^{224}\)

But auditing may miss dimensions of real-world racial discrimination. For example, if the police heavily target young men who dress a certain way, and virtually all such young men are black, perhaps clothing style is not a confounder that should be filtered out via the use of identically dressed testers, but rather a race proxy—a mechanism for racially disparate treatment. Similarly, most of the designs above would test disparities within neighborhoods (or at checkpoints), and would miss differences driven by neighborhood racial composition.

The auditing design could, however, be extended to test the effects of such race-correlated variables and their interaction with race—for example, by changing the same testers’ clothing and/or sending them to different neighborhoods. An advantage over observational studies of inter-neighborhood disparities is that this approach could rule out inter-neighborhood differences in individuals’ behavior, although it would not necessarily rule out all other neighborhood differences. Similarly, evidence that the police disfavor some characteristic like a clothing style would not definitively prove that they are using it as a race proxy.

Auditing would produce context-specific estimates, not an overall measure of racial discrimination in stops or arrests.\(^{225}\) These estimates will be more informative if the test is similar to some class of activity that produces a reasonable share of the department’s stops or arrests. Loitering and minor-in-possession are good examples.

5. Implementation

Given its longstanding role in civil rights enforcement, federal or state agencies’ use of auditing to assess police disparities is plausible. Tester programs in other areas have sometimes been controversial,\(^{226}\) and may be in this context as well, but there are countervailing political pressures. In surveys, large majorities oppose racial profiling.\(^{227}\) DOJ’s Civil Rights Division has a strong interest in the issue and in police abuses generally,\(^{228}\) and the issue has been a high overall DOJ priority.

\(^{224}\) See Quillian, supra note 131, at 303 ("[A]udit studies often are the best method for measuring...discrimination.").

\(^{225}\) Cf. Heckman, supra note 217, at 102-11 (criticizing employment audit studies for not estimating market discrimination).

\(^{226}\) See Selmi, supra note 208, at 1427; Alex Young K. Oh, Using Employment Testers to Detect Discrimination, 7 GEO. J. LEGAL ETHICS 1473, 480 (1993) (citing employer fears of tester litigation).

\(^{228}\) Addressing Police Misconduct Laws Enforced by the Department of Justice, U.S. DEPT OF JUSTICE,
following recent events. Outside-agency auditing would lose some of the advantages of police-department self-monitoring (for example, access to internal data), but it would retain the advantages of being able to use trained undercover officers and protect them from physical or legal harm. The outside-enforcement approach would face less risk of being compromised by leaks or internal resistance. It is the most plausible strategy when a police department is hostile to scrutiny.

Auditing could also be required by court order or settlement in civil rights litigation. Analogously, the New Jersey Attorney General’s office carried out a major benchmarking study under a settlement with DOJ. Outside monitors have been appointed for numerous police departments under consent decrees.

Voluntary self-auditing by police departments is promising, but is it realistic? After all, adverse findings could be embarrassing and invite litigation. Moreover, the studies could be resource-intensive and risk angering officers and unions. Still, while many departments would doubtless reject the idea, the 18,000 law enforcement agencies in the U.S. are not monolithic. Typically, agency heads are political appointees, and there is no reason to assume that all cities’ political leaders would be primarily interested in hiding racial discrimination, rather than eliminating it.

Hundreds of police departments have already invested considerable resources in collecting racial disparity data, and many have carried out ambitious studies. Some police departments have “early warning” programs to identify individual problem officers. Any of these programs risks litigation or officer backlash—indeed, programs that risk getting individual officers in trouble may raise a worse risk of backlash than auditing does. These risks have not precluded their adoption.

There is substantial precedent for undercover police work to help departments self-diagnose problems. Some departments use a practice called “red teaming” to test police responses to security threats and emergency situations. Undercover agents

221 See Lange et al, supra note 198, at 196-97.
223 See, e.g., Engel et al, supra note 53; Ctr. for Policing Equity, What We’ve Done, http://cepe.uchicago.edu/what-we’ve-done (describing CPE’s work with police departments).
224 Engel & Calnon, supra note 34, at 109; see Ridgeway, supra, at 21-30.
are also often employed in police corruption investigations. Several police departments (including New York and Los Angeles) regularly conduct “random integrity tests”—exposing officers to random stings. Corruption is likely as embarrassing to police departments as racial discrimination is—yet these departments have carried out the corruption equivalent of auditing.

But even if departments can be persuaded to undertake auditing studies, can they be trusted not to undermine their accuracy? Internal affairs divisions and police leadership have often been sharply criticized for papering over police misconduct and corruption. Under the right conditions, however, the prospects for effectiveness are reasonable. Self-studies will be more credible if undertaken together with outside watchdog organizations or academic researchers who have control over data collection and analysis—provided those outside actors are truly independent. Undercover agents, presumably borrowed from other departments, would have to be carefully chosen, because they would have to be trusted not to tip off other officers or to try to manipulate the study’s findings.

If police departments are reluctant to expose themselves to liability or criticism, they could conduct internal auditing programs without publicizing results, or ask academic collaborators to publish anonymized results. To encourage self-studies, legislatures could consider creating evidentiary privileges. Congress has enacted just such “self-testing” privileges for mortgage lenders and creditors in the Fair Housing Act and the Equal Credit Opportunity Act. These apply only if, upon discovering evidence of discrimination, the lender undertakes “appropriate corrective action.” If legislatures applied similar privileges to police self-testing, they would be modest.

238 E.g., Ivkovic, supra note 237, at 596-97.
239 This is the modus operandi of the Center for Policing Equity, which connects researchers with police departments. Center for Policing Equity, What We Do, http://cpe.psych.ucla.edu/. See Merrick Bobb, Civilian Oversight of the Police in the United States, 22 ST. LOUIS UNIV. L. REV. 151, 159-63 (2003) (describing some departments’ voluntary use of accountability organizations, independent investigators, and civilian review boards to monitor use of force and corruption).
240 Civilian oversight boards have often been criticized for being overly deferential to police. E.g., Stephen Clarke, Note, Arrested Oversight: A Comparative Study of How Civilian Oversight of the Police Should Function and How it Fails, 43 COLUM. J.L. & SOC. PROBS. 1, 11-12 (2009). Academic researchers with external (non-police) funding may be better equipped to provide accountability, but it will be important to negotiate agreements preserving researchers’ control over reporting of results.
241 Riach & Rich, supra note 198, at F483, worry that “consciously or unconsciously, minority applicants may be motivated to prove the existence of discrimination.” See Heckman, supra note 217, at 104. When police are investigating police, one might worry more about the opposite concern.
242 See Tomkowiak, supra note 209, at 326-27.
extensions of the “self-criticism privileges” that law enforcement agencies already often invoke (which cover subjective analyses but not underlying facts). 244

If government involvement proves impracticable, academic researchers might be able to carry out some of the designs on their own. Academic research is by Institutional Review Board oversight, 245 but IRBs generally focus on harms to subjects (here, police) and perhaps third parties. Here, essentially all the risk is on the research staff (the testers). 246 But while the IRB may not regulate such risks, ethical researchers should consider them. While well-informed research staff should be free to take on non-zero risks (as much research does), supervisors should aim to keep this risk minimal, especially if they are students, who may be reluctant to refuse.

Overall, while auditing designs could face serious practical and political hurdles, their use is plausible. They offer a potentially valuable new addition to the toolkit of researchers, civil rights agencies, and police departments.

CONCLUSION

There is no single correct empirical method for assessing racial disparities in policing, because there is no single correct normative conception of what kind of inequality we should care about. I have focused my analysis principally on how to get at two estimands that I consider especially important: first, racial disparity in police interactions conditional on criminal conduct, and second, the effects of police racial discrimination. The policing-to-crime comparisons that have dominated the literature give a skewed sense of the first, generally overcorrecting for crime differences. Meanwhile, several available methods for assessing police racial discrimination are useful, but are limited by various causal-inference and external-validity concerns; auditing, despite its challenges, is an appealing alternative.

Some will no doubt disagree with me as to what the most important empirical questions are. I hope that this discussion might persuade those with different views to articulate them clearly and to employ quantitative analyses that are consistent with their normative premises. An analysis that is well designed to answer one question may produce dramatically wrong conclusions if it is misinterpreted as an answer to another. The conceptual confusions that have pervaded public and scholarly debates about race and policing are not merely a matter of laypeople misunderstanding statistics or activists strategically misusing them. One can hardly expect more out of the public debate when much of the underlying empirical literature is itself riddled with the same problems. We can and should do better.

244 See Josh Jones, Note, Behind the Shield? Law Enforcement Agencies and the Self-Critical Analysis Privilege, 60 WASH. & LEE L. REV. 1609, 1611-14 (2003). Federal privilege legislation could be grounded in Congress’s Fourteenth Amendment enforcement powers, and could perhaps extend to state courts.

245 This may be true even if researchers work with government, depending on their roles.

246 Research guidelines also generally permit dispensing with informed consent if the research design requires it (as it does here) and the potential harm is minimal. See Pager, supra note 198, at 126.
APPENDIX

Tables

Table A1. Examples Assuming Racial Equality Conditional on Conduct

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guilty Stop Rate: (S_G/P_G)</td>
<td>50%</td>
<td>25%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Innocent Stop Rate: (S_I/P_I)</td>
<td>25%</td>
<td>25%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Black Guilt Rate: (P_{GB}/P_B)</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>96%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>White Guilt Rate: (P_{GW}/P_W)</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
<td>92%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Num. Black: (P_B)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Num. White: (P_W)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Stop Ratio/Crime Ratio ((S_B/S_W)/(P_{GB}/P_{GW}))</td>
<td>0.58</td>
<td>0.5</td>
<td>0.82</td>
<td>0.63</td>
<td>0.36</td>
<td>0.98</td>
<td>0.58</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>Stop Share/Crime Share ((S_B/S)/(P_{GB}/P_{GW}))</td>
<td>0.81</td>
<td>0.75</td>
<td>0.93</td>
<td>0.84</td>
<td>0.74</td>
<td>0.99</td>
<td>0.68</td>
<td>0.93</td>
<td>1</td>
</tr>
<tr>
<td>Hit Rate Ratio ((S_{GB}/S)/(S_{GW}/S))</td>
<td>1.71</td>
<td>2</td>
<td>1.22</td>
<td>1.58</td>
<td>2.74</td>
<td>1.02</td>
<td>1.71</td>
<td>1.71</td>
<td>1</td>
</tr>
</tbody>
</table>

General notes:

a. All scenarios apply the same stop rates to people with the same criminal conduct, regardless of race. The first six lines show hypothetical assumptions; the bottom three lines show ratios calculated based on those assumptions. All assume higher black crime rates (except [9], which assumes no difference), paralleling the usual argument made in defense of policing disparities.

b. Although all the stop rates in these examples are higher than one would find in most real-world policing contexts, one could divide every stop rate by 10 (or by anything) and it would not affect any of the ratios.

c. The Hit Rate Ratio is discussed in Part II.D. It is 1 if stops are equally productive (likely to succeed in catching a criminal) across racial groups. Note that here, policing is racially equitable conditional on conduct, but (except in Column 9, where there is no crime difference) hit rates are never aligned.

Notes on each column:

[1] parallels the Table 1 example in the text.

[2] and [3] vary the degree to which the police accurately discern guilt (i.e., varies the gap between innocent and guilty stop rates). The Ratio/Ratio and Share/Share measures are less misleading when the police are more discriminating, because there are fewer stops of the innocent.

[4] lowers guilt rates for both races. Although (as in [3]) the police are ten times as likely to stop the guilty, 61% of stops overall are of the innocent, and the Ratio/Ratio and Share/Share measures perform badly.

[5] further lowers the white guilt rate. With a larger crime-rate difference, the measures are even more misleading.

[6] is the same as [1] except guilt rates are very high. With few innocents, and thus few stops of the innocent, the Ratio/Ratio and Share/Share measures are close to the true ratio of stops among the guilty.

[7] and [8] are the same as [1] except that the relative population sizes vary. Only the Share/Share measure changes as a result. It is always closer to 1 than the Ratio/Ratio measure, and is more “diluted” in this sense the larger the high-crime group’s population share is.

[9] is the same as [1] except it eliminates the crime-rate disparity. The problems with the Ratio/Ratio and Share/Share measures disappear; they emerge only when there are crime-rate differences.
Table A2. Examples Assuming Racial Disparity Conditional on Conduct

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Guilty Stop % (\frac{SC_B}{GB})</td>
<td>50%</td>
<td>50%</td>
<td>40%</td>
<td>50%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>White Guilty Stop % (\frac{SC_W}{GW})</td>
<td>25%</td>
<td>20%</td>
<td>30%</td>
<td>50%</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
<td>25%</td>
</tr>
<tr>
<td>Black Innocent Stop % (\frac{SI_B}{PIB})</td>
<td>30%</td>
<td>20%</td>
<td>25%</td>
<td>50%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>White Innocent Stop % (\frac{SI_W}{PIW})</td>
<td>15%</td>
<td>15%</td>
<td>10%</td>
<td>10%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
<td>15%</td>
</tr>
<tr>
<td>Black Guilt (\frac{P_{GB}}{P_B})</td>
<td>40%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>White Guilt (\frac{P_{GW}}{P_W})</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Number Black: (P_B)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>4000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Number White: (P_W)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>4000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Stop Rate Ratio: Guilty (\frac{SC_B}{SI_B})</td>
<td>1.67</td>
<td>2.5</td>
<td>1.33</td>
<td>1</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>2</td>
</tr>
<tr>
<td>Stop Rate Ratio: Innocent (\frac{SC_W}{SI_W})</td>
<td>1.67</td>
<td>1.33</td>
<td>2.5</td>
<td>5</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>2</td>
</tr>
<tr>
<td>Stop Ratio/ Crime Ratio (\frac{SC_B}{SI_B} / \frac{SC_W}{SI_W})</td>
<td>0.97</td>
<td>0.84</td>
<td>1.17</td>
<td>1.79</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>2</td>
</tr>
<tr>
<td>Stop Share / Crime Share (\frac{SC_B}{SI_B} / \frac{SC_W}{SI_W})</td>
<td>0.99</td>
<td>0.94</td>
<td>1.05</td>
<td>1.17</td>
<td>0.58</td>
<td>0.40</td>
<td>0.80</td>
<td>1.33</td>
</tr>
<tr>
<td>Average Stop Rate Ratio, Holding Guilt Constant at Black Mean</td>
<td>1.67</td>
<td>1.63</td>
<td>2</td>
<td>2.78</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>2</td>
</tr>
<tr>
<td>(Weighted Mean of (DB) and (DI))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hit Rate Ratio</td>
<td>1.72</td>
<td>2.98</td>
<td>1.14</td>
<td>0.56</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
<td>1</td>
</tr>
</tbody>
</table>

General Notes
a. The first eight lines are assumptions; the last six are calculated ratios that represent different possible measures of disparity. In addition to the measures from Table 1A, this table includes \(DB \), \(DI \), and a weighted average of the two called the "Average Stop Rate Ratio Holding Guilt Constant at Black Mean." These measures were not included in Table 1A because there we were assuming no disparities in stop rates conditional on conduct (so all of them would have been 1).
b. The Average Stop Rate Ratio line represents one of several reasonable ways of averaging the stop rate ratio among the guilty and the stop rate ratio among the innocent to produce an overall average stop rate ratio conditional on criminal conduct. It reflects a reweighting exercise that compares an observed outcome to a counterfactual outcome. It asks: By what proportion does the number of black stops differ from the number that we would have seen if the white conditional stop probabilities had been applied to the black population? This proportion can be expressed as:

\[
\text{Average Stop Rate Ratio} = \frac{S_B}{P_{IB} \cdot S_{IW} + P_{GB} \cdot S_{GW}}
\]

This proportion represents the multiplicative effect on stops of applying the black conditional stop probabilities (instead of the counterfactual white ones) to the black population—or, put another way, it is the average disparity holding guilt rates constant at the black average. In the notes on Proof 3, I discuss two other, similar ways one might reasonably estimate “average disparity” conditional on conduct, holding guilt rates constant either at the white average or at the overall population average. All three versions always produce average stop rate ratios that fall between \(DB \) and \(DI \).

Notes on each column
[1] parallels the Table 2 example in the text.
[2] and [3] likewise assume that black pedestrians are much more likely to be stopped conditional on criminal conduct, but here disparities are not uniform across criminal conduct conditions. The disparity is larger among the guilty in [2] and the innocent in [3]. The Ratio/Ratio and Share/Share measures again mask these disparities, or (in [2]) reverse their apparent direction. One might expect disparities that are similar across conduct conditions (as in [1]) if police are paying more attention across the board to black pedestrians, or have stationed more officers in their neighborhoods. One might expect greater disparity among the guilty (as in [2]) if the police both are paying more attention to black pedestrians and are more accurate in discerning their guilt. One might expect greater disparity among the innocent (as in [1]) if the police lower the suspicious-behavior bar for stopping black pedestrians, affecting mostly the innocent.

[4] again assumes racial disparity conditional on conduct, disfavoring blacks, but this time it is entirely driven by a large disparity in stops of the guilty. In scenarios with dissimilar disparities among the innocent and the guilty, it is possible for the Ratio/Ratio and Share/Share measures to be higher than D_1 but lower than D_c (or vice-versa), whereas in most of the examples they are lower than both. (The opposite scenario would also be possible.) However, the Ratio/Ratio measure systematically misleads in a particular direction in the sense that it always appears to be more favorable to the higher-crime group than the true average stop rate ratio conditional on criminal conduct.

[5] through [7] show examples in which we assume the true disparity cuts the other direction: white stop rates are higher conditional on criminal conduct. The Ratio/Ratio measure now substantially exaggerates the disparity, making it look like white pedestrians are only 31% as likely to be stopped as black pedestrians, conditional on criminal conduct (when the actual assumed ratio is 57%). The only difference between these three columns is the group population sizes, which affect the Share/Share measure only. When true disparities conditional on criminal conduct cut in favor of the higher-crime group, the Share/Share measure does not always mislead in the same direction, because of its “dilution” toward 1 (relative to the Ratio/Ratio measure), which is more pronounced when the group whose shares are being compared (here, blacks) is a larger share of the population.

[8] shows an example that parallels [1], except with equal black and white crime rates. The Ratio/Ratio measure is no longer misleading—it matches the actual average stop rate ratio. The Share/Share ratio is closer to 1, as in all examples.
Proving Race Gaps in Policing

Proofs

Proof 1.

This proof shows that when there is racial equality in policing rates conditional on criminal conduct, but crime rates differ and not all stops are of the guilty, the higher-crime group always appears relatively “underpoliced” according to the Stop Ratio/Crime Ratio and Stop Share/Crime Share measures. The proof begins by showing that the Ratio/Ratio measure is less than 1 under these conditions (with the higher-crime group in the numerator), and proceeds to show that the Share/Share measure is also less than 1.

Definitions:

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populations</td>
<td>(P_1 = P_{I1} + P_{G1})</td>
<td>(P_2 = P_{I2} + P_{G2})</td>
<td>(P = P_1 + P_2)</td>
</tr>
<tr>
<td></td>
<td>(S_1 = S_{I1} + S_{G1})</td>
<td>(S_2 = S_{I2} + S_{G2})</td>
<td>(S = S_1 + S_2)</td>
</tr>
</tbody>
</table>

*Subscripts I and G denote innocent and guilty subsets.

Assumptions:

(a)	Group 1 has a higher crime rate.	\(\frac{P_{G2}}{P_2} < \frac{P_{G1}}{P_1} \)
(b)	Equal stop rates of innocent.	\(D_I = \frac{S_{I1}}{S_{I2}} \cdot \frac{P_{I1}}{P_{I2}} = 1 \)
(c)	Equal stop rates of guilty.	\(D_G = \frac{S_{G1}}{S_{G2}} \cdot \frac{P_{G1}}{P_{G2}} = 1 \)
(d)	For both groups, \(P_I, P_G, S_I, \) and \(S_G \) are > 0.	

Objective 1. Prove: \(\frac{S_I}{S_G} \cdot \frac{P_{G1}}{P_{G2}} < 1 \)

(1) Apply Population definitions to (a).

\[
\frac{P_{G2}}{P_{I2} + P_{G2}} < \frac{P_{G1}}{P_{I1} + P_{G1}}
\]

(2) Rearrange terms.

\[
\frac{P_{I1} + P_{G1}}{P_{G1}} < \frac{P_{I2} + P_{G2}}{P_{G2}}
\]
(3) Simplify (subtract 1 from both sides).
\[
\frac{P_I}{P_G} < \frac{P_I}{P_G}
\]

(4) Divide by equivalent terms.
[From (b), we know \(P_I S_{I2} = P_I S_{I1}\)]
\[
\frac{P_I}{P_G} \cdot (P_I S_{I1}) < \frac{P_I}{P_G} \cdot (P_I S_{I2})
\]

(5) Simplify and rearrange terms.
\[
P_{G2} S_{I1} < P_{G1} S_{I2}
\]

(6) Add equivalent terms.
[From (c), we know \(P_{G2} S_{G1} = P_{G1} S_{G2}\)]
\[
P_{G2} S_{I1} + P_{G2} S_{G1} < P_{G1} S_{I2} + P_{G1} S_{G2}
\]

(7) Simplify.
\[
P_{G2} (S_{I1} + S_{G1}) < P_{G1} (S_{I2} + S_{G2})
\]

(8) Apply Stops definitions.
\[
P_{G2} S_{I1} < P_{G1} S_{I2}
\]

(9) Rearrange.
\[
\frac{S_{I1}}{S_{I2}} < \frac{P_{G1}}{P_{G2}} < 1 \quad Q.E.D (1)
\]

Objective 2. Prove:
\[
\frac{S_{I1}}{S_{I2}} < 1
\]

(10) Continuing from step (8), add identical terms.
\[
P_{G2} S_{I1} + P_{G1} S_{I1} < P_{G1} S_{I2} + P_{G1} S_{I1}
\]

(11) Simplify.
\[
S_{I1} (P_{G2} + P_{G1}) < P_{G1} (S_{I2} + S_{I1})
\]

(12) Apply Stops & Population definitions.
\[
S_{I1} P_{G} < P_{G1} S
\]

(13) Rearrange.
\[
\frac{S_{I1}}{S} < \frac{P_{G1}}{P_{G}} < 1 \quad Q.E.D (2)
\]
Proof 2

This proof demonstrates that if the Stop Ratio/Crime Ratio measure is less than 1, the Stop Share/Crime Share measure is greater than the Ratio/Ratio measure. Above, in the second half of Proof 1, it was demonstrated that under this condition the Share/Share measure is also less than 1. Both proofs also work if all inequalities are reversed. Taken together, the implication is that the Stop Share/Crime Share measure is always closer to 1 than the Stop Ratio/Crime Ratio is, unless both are exactly 1. Definitions are the same as in Proof 1.

<table>
<thead>
<tr>
<th>Assumption: (\frac{S_1}{S_2} < 1)</th>
<th>Prove: (\frac{S_1}{S_2} < \frac{S_1}{(S_1 + S_2)})</th>
</tr>
</thead>
</table>

1. Rearrange terms. \(S_1 P_{G2} < S_2 P_{G1} \)
2. Add identical terms. \(S_1 P_{G2} + S_2 P_{G2} < S_2 P_{G1} + S_2 P_{G2} \)
3. Simplify. \(P_{G2}(S_1 + S_2) < S_2(P_{G1} + P_{G2}) \)
4. Rearrange terms. \(\frac{P_{G2}}{S_2} < \frac{P_{G1} + P_{G2}}{S_1 + S_2} \)
5. Multiply both sides by \(\frac{S_1}{P_{G1}} \) \(\frac{S_1 P_{G2}}{S_2 P_{G1}} < \frac{S_1(P_{G1} + P_{G2})}{P_{G1}(S_1 + S_2)} \)
6. Rearrange terms. \(\frac{S_1}{S_2} < \frac{S_1}{(S_1 + S_2)} \frac{P_{G1}}{P_{G2}} \leq Q.E.D. \)
Proof 3a.
Definitions are the same as in Proof 1. The first step in this proof shows that the Stop Ratio/Crime Ratio measure is always less than the Average Stop Rate Ratio as defined in the notes to Table A2 above, with the higher-crime group (labeled Group 1 here) in the numerator of all ratios. Recall that this version of the Average Stop Rate Ratio represents the average effect of the inter-group conditional stop probability differences on Group 1. (Using the parlance of the reweighting literature, this could be called the “average treatment effect on the treated,” expressed as a likelihood ratio.) The numerator of the ratio is the observed number of stops in Group 1; the denominator is the number that would have been observed in Group 1 if the distribution of guilt and innocence had been the same, but Group 2’s stop probabilities (conditional on criminal conduct) had applied instead.

Assumptions

<table>
<thead>
<tr>
<th></th>
<th>Group 1 has a higher crime rate, so: $P_{G1} > P_{G2}, \frac{P_{I1}}{P_{I2}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>For both groups, $P_{I1}, P_{G1}, S_{I1}, S_{G1}$ are > 0.</td>
</tr>
</tbody>
</table>

Prove: $\frac{S_{1} / S_{2}}{P_{G1} / P_{G2}} < \frac{S_{1}}{P_{I1} * S_{I2} / P_{I2} + P_{G1} * S_{G2} / P_{G2}}$

(1) Rearrange terms from (a).

$P_{G1} > \frac{P_{G2} * P_{I1}}{P_{I2}}$

(2) Multiply by identical terms.

$P_{G1} * S_{I2} > \frac{P_{G2} * P_{I1} * S_{I2}}{P_{I2}}$

(3) Apply Stops definition.

$P_{G1} (S_{2} - S_{G2}) > \frac{P_{G2} * P_{I1} * S_{I2}}{P_{I2}}$

(4) Rearrange.

$P_{G1} * S_{2} > \frac{P_{G2} * P_{I1} * S_{I2}}{P_{I2}} + P_{G1} * S_{G2}$

(5) Divide both sides by $P_{G2} * S_{1}$.

$\frac{P_{G1} * S_{2}}{P_{G2} * S_{1}} > \frac{P_{I1} * S_{I2} / P_{I2} + P_{G1} * S_{G2} / P_{G2}}{S_{1}}$

(6) Invert both sides and reverse inequality.

$\frac{S_{1} / S_{2}}{P_{G1} / P_{G2}} < \frac{S_{1}}{P_{I1} * S_{I2} / P_{I2} + P_{G1} * S_{G2} / P_{G2}}$ Q.E.D.

Proof 3b.
This next proof, which proceeds along extremely similar lines, shows that the Stop Ratio/Crime Ratio measure is also always less than an alternative measure of average stop-rate disproportionality conditional on criminal conduct—one that holds guilt rates constant at Group 2’s average instead. This measure represents the likelihood ratio associated with applying Group 1’s conditional stop probabilities (instead of Group 2’s)
to Group 2 (which could be called the “average treatment effect on the untreated”). Assumptions and definitions are the same as above. Note that the overall “average treatment effect” for the population as a whole would be an average of these two versions of the Average Stop Rate Ratio, weighted by the sizes of Groups 1 and 2. It thus follows from Proofs 3a and 3b that that overall average would also always be higher than the Stop Ratio/Crime Ratio measure.

Prove: \[
\frac{S_1/S_2}{P_{G1}/P_{G2}} < \frac{P_{I2} * S_{I1}/P_{I1} + P_{G2} * S_{G1}/P_{G1}}{S_2/P_{G1}}
\]

(1) Rearrange terms from (a). \[P_{G2} < \frac{P_{G1}P_{I2}}{P_{I1}} \]

(2) Multiply by identical terms. \[P_{G2}S_{I1} < \frac{P_{G1}P_{I2}S_{I1}}{P_{I1}} \]

(3) Apply Stops definition. \[P_{G2}(S_{I} - S_{G1}) < \frac{P_{G1}P_{I2}S_{I1}}{P_{I1}} \]

(5) Rearrange. \[P_{G2}S_{I} < \frac{P_{G1}P_{I2}S_{I1}}{P_{I1}} + P_{G2}S_{G1} \]

(6) Divide both sides by \(P_{G1}S_2 \) and rearrange. \[
\frac{S_1/S_2}{P_{G1}/P_{G2}} < \frac{P_{I2} * S_{I1}/P_{I1} + P_{G2} * S_{G1}/P_{G1}}{S_2/P_{G1}} \]

Q.E.D.